Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,058 Bytes
2a01fa1 7f73a1c 2a01fa1 5d6783e 2a01fa1 896e071 d0b4b02 896e071 74d6bf5 2ccb1ee 5d6783e 58755ce 5d6783e 896e071 946d1a8 5d6783e 03948e3 5d6783e 946d1a8 2ccb1ee 03948e3 946d1a8 aedf8bf 946d1a8 aedf8bf 946d1a8 aedf8bf 946d1a8 7aeb7f8 2ccb1ee 7aeb7f8 2ccb1ee aedf8bf 2ccb1ee ee01cfa 2ccb1ee 58755ce 5d6783e 7f73a1c 5d6783e 7f73a1c 5d6783e 7f73a1c 5d6783e 7f73a1c 5d6783e e7d74c5 7f73a1c e7353da 98a403f e7353da 7f73a1c 582c792 2a01fa1 582c792 2a01fa1 582c792 e7d74c5 582c792 2a01fa1 5d6783e 58755ce 5d6783e 2a01fa1 e7d74c5 5d6783e e7d74c5 5d6783e 2a01fa1 5d6783e 58755ce 2a01fa1 846298d 2ccb1ee 582c792 aedf8bf 582c792 846298d 5d6783e 447b558 b8b21a5 846298d 5d6783e aedf8bf 846298d 2a01fa1 5d6783e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import spaces
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
import json
LEAN4_DEFAULT_HEADER = (
"import Mathlib\n"
"import Aesop\n\n"
"set_option maxHeartbeats 0\n\n"
"open BigOperators Real Nat Topology Rat\n"
)
title = """🙋🏻♂️Welcome to🌟Tonic's🔮Goedel Prover📉
You can build with this endpoint using🔮Goedel-Prover-SFT📉 available here : [Goedel-LM/Goedel-Prover-SFT](https://huggingface.co./Goedel-LM/Goedel-Prover-SFT)."""
def format_prompt(formal_statement, informal_prefix=""):
"""Format the input according to the Lean4 structure"""
return (
f"Complete the following Lean 4 code with explanatory comments preceding each line of code:\n\n"
f"```lean4\n"
f"{LEAN4_DEFAULT_HEADER}\n"
f"{informal_prefix}\n"
f"{formal_statement}"
)
def extract_code(response):
"""Extract code between lean4 code blocks and the model's output"""
try:
# Find the last occurrence of ```lean4 and extract everything until the last ```
start_idx = response.rfind("```lean4")
if start_idx == -1:
return response.strip()
# Get content after ```lean4
content = response[start_idx + 7:]
# Find the last closing ```
end_idx = content.rfind("```")
if end_idx != -1:
content = content[:end_idx]
# Clean up the content
lines = content.split('\n')
cleaned_lines = []
for line in lines:
# Skip empty lines at start
if not cleaned_lines and not line.strip():
continue
# Skip "Complete the following" lines
if "Complete the following" in line:
continue
cleaned_lines.append(line)
return '\n'.join(cleaned_lines)
except Exception as e:
print(f"Error in extract_code: {str(e)}")
return "Error processing code"
# Example problems
unimath1 = """Goal:
X : UU
Y : UU
P : UU
xp : (X → P) → P
yp : (Y → P) → P
X0 : X × Y → P
x : X
============================
(Y → P)"""
unimath2 = """Goal:
R : ring M : module R
============================
(islinear (idfun M))"""
unimath3 = """Goal:
X : UU i : nat b : hProptoType (i < S i) x : Vector X (S i) r : i = i
============================
(pr1 lastelement = pr1 (i,, b))"""
unimath4 = """Goal:
X : dcpo CX : continuous_dcpo_struct X x : pr1hSet X y : pr1hSet X
============================
(x ⊑ y ≃ (∀ i : approximating_family CX x, approximating_family CX x i ⊑ y))"""
additional_info_prompt = "/-Explain using mathematics-/\n"
examples = [
[unimath1, additional_info_prompt, 2500],
[unimath2, additional_info_prompt, 2500],
[unimath3, additional_info_prompt, 2500],
[unimath4, additional_info_prompt, 2500]
]
model_name = "Goedel-LM/Goedel-Prover-SFT"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
# Set generation config
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
model.generation_config.bos_token_id = 100000
model.generation_config.eos_token_id = 100001
model.generation_config.do_sample = True
model.generation_config.temperature = 1.0
model.generation_config.top_p = 0.95
@spaces.GPU
def solve_math_problem(question, informal_prefix, max_tokens):
# Format the prompt using Lean4 structure
prompt = format_prompt(question, informal_prefix)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
attention_mask = torch.ones_like(input_ids)
outputs = model.generate(
input_ids,
attention_mask=attention_mask,
max_length=max_tokens + input_ids.shape[1],
pad_token_id=model.generation_config.pad_token_id,
temperature=1.0,
top_p=0.95,
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the full code from the response
full_code = extract_code(prompt + result)
# Create output dictionary similar to reference code
output_data = {
"model_input": prompt,
"model_output": result,
"full_code": full_code
}
return json.dumps(output_data, indent=2), full_code
def main():
iface = gr.Interface(
title="🙋🏻♂️Welcome to🌟Tonic's🔮Goedel Prover📉",
description="""You can build with this endpoint using🔮Goedel-Prover-SFT📉 available here : [Goedel-LM/Goedel-Prover-SFT](https://huggingface.co./Goedel-LM/Goedel-Prover-SFT). We're using 🤖[introspector/unimath](https://huggingface.co./datasets/introspector/unimath) for cool examples, check it out below ! The demo is still a work in progress and we're looking forward to build downstream tasks that showcase outstanding mathematical reasoning. Have any ideas ? join us below !
You can also use 🔮Goedel Prover📉 by cloning this space. Simply click here: <a style="display:inline-block" href="https://huggingface.co./spaces/Tonic/Math?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [Join us on Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co./TeamTonic) & [MultiTransformer](https://huggingface.co./MultiTransformer) Math with [introspector](https://huggingface.co./introspector) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [SciTonic](https://github.com/Tonic-AI/scitonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
""",
fn=solve_math_problem,
outputs=[
gr.JSON(label="Full Output"),
gr.Code(label="Extracted Lean4 Code", language="python")
],
inputs=[
gr.Textbox(label="🤔Enter your Lean4 formal statement", lines=7),
gr.Textbox(value=additional_info_prompt, label="🪜Optional informal prefix"),
gr.Slider(minimum=150, maximum=4086, value=2500, label="🪙Max Tokens")
],
examples=examples
)
iface.launch()
if __name__ == "__main__":
main()
|