Tonic commited on
Commit
e7d74c5
Β·
verified Β·
1 Parent(s): 811908a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -2
app.py CHANGED
@@ -48,7 +48,7 @@ unimath4 = """Goal:
48
  ============================
49
  (x βŠ‘ y ≃ (βˆ€ i : approximating_family CX x, approximating_family CX x i βŠ‘ y))"""
50
 
51
- additional_info_prompt = "/-Explain using mathematics-/"
52
 
53
  examples = [
54
  [unimath1, additional_info_prompt, 2500],
@@ -66,6 +66,9 @@ model.generation_config = GenerationConfig.from_pretrained(model_name)
66
  model.generation_config.pad_token_id = model.generation_config.eos_token_id
67
  model.generation_config.bos_token_id = 100000
68
  model.generation_config.eos_token_id = 100001
 
 
 
69
 
70
  @spaces.GPU
71
  def solve_math_problem(question, informal_prefix, max_tokens):
@@ -73,13 +76,15 @@ def solve_math_problem(question, informal_prefix, max_tokens):
73
  prompt = format_prompt(question, informal_prefix)
74
 
75
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
 
 
76
  outputs = model.generate(
77
  input_ids,
 
78
  max_length=max_tokens + input_ids.shape[1],
79
  pad_token_id=model.generation_config.pad_token_id,
80
  temperature=1.0,
81
  top_p=0.95,
82
- do_sample=True
83
  )
84
 
85
  result = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
48
  ============================
49
  (x βŠ‘ y ≃ (βˆ€ i : approximating_family CX x, approximating_family CX x i βŠ‘ y))"""
50
 
51
+ additional_info_prompt = "/-Explain using mathematics-/\n"
52
 
53
  examples = [
54
  [unimath1, additional_info_prompt, 2500],
 
66
  model.generation_config.pad_token_id = model.generation_config.eos_token_id
67
  model.generation_config.bos_token_id = 100000
68
  model.generation_config.eos_token_id = 100001
69
+ model.generation_config.do_sample = True
70
+ model.generation_config.temperature = 1.0
71
+ model.generation_config.top_p = 0.95
72
 
73
  @spaces.GPU
74
  def solve_math_problem(question, informal_prefix, max_tokens):
 
76
  prompt = format_prompt(question, informal_prefix)
77
 
78
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
79
+ attention_mask = torch.ones_like(input_ids)
80
+
81
  outputs = model.generate(
82
  input_ids,
83
+ attention_mask=attention_mask,
84
  max_length=max_tokens + input_ids.shape[1],
85
  pad_token_id=model.generation_config.pad_token_id,
86
  temperature=1.0,
87
  top_p=0.95,
 
88
  )
89
 
90
  result = tokenizer.decode(outputs[0], skip_special_tokens=True)