Tanusree88's picture
Update app.py
87db8d4 verified
import os
import zipfile
import numpy as np
import torch
from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor
from transformers import ResNetForImageClassification, AdamW
from PIL import Image
from torch.utils.data import Dataset, DataLoader
import streamlit as st
# Load feature extractor and model
feature_extractor = SegformerFeatureExtractor.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512')
segformer_model = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512')
# Function to extract zip files
def extract_zip(zip_file, extract_to):
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
zip_ref.extractall(extract_to)
# Preprocess images
def preprocess_image(image_path):
ext = os.path.splitext(image_path)[-1].lower()
if ext == '.npy':
image_data = np.load(image_path)
image_tensor = torch.tensor(image_data).float()
if len(image_tensor.shape) == 3:
image_tensor = image_tensor.unsqueeze(0)
elif ext in ['.jpg', '.jpeg']:
img = Image.open(image_path).convert('RGB').resize((224, 224))
img_np = np.array(img)
image_tensor = torch.tensor(img_np).permute(2, 0, 1).float()
else:
raise ValueError(f"Unsupported format: {ext}")
image_tensor /= 255.0 # Normalize to [0, 1]
return image_tensor
# Prepare dataset
def prepare_dataset(extracted_folder):
neuronii_path = os.path.join(extracted_folder, "neuroniiimages")
if not os.path.exists(neuronii_path):
raise FileNotFoundError(f"The folder neuroniiimages does not exist in the extracted folder: {neuronii_path}")
image_paths = []
labels = []
# Define the mapping of folders to labels
folder_label_mapping = {
'alzheimers_dataset': 0,
'parkinsons_dataset': 1,
'MSjpg': 2
}
for disease_folder, label in folder_label_mapping.items():
folder_path = os.path.join(neuronii_path, disease_folder)
if not os.path.exists(folder_path):
print(f"Folder not found: {folder_path}")
continue
for img_file in os.listdir(folder_path):
if img_file.endswith(('.npy', '.jpg', '.jpeg')):
image_paths.append(os.path.join(folder_path, img_file))
labels.append(label)
else:
print(f"Unsupported file: {img_file}")
print(f"Total images loaded: {len(image_paths)}")
return image_paths, labels
# Custom Dataset class
class CustomImageDataset(Dataset):
def __init__(self, image_paths, labels):
self.image_paths = image_paths
self.labels = labels
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
image = preprocess_image(self.image_paths[idx])
label = self.labels[idx]
return image, label
# Training function for classification
def fine_tune_classification_model(train_loader):
# Load the ResNet model with ignore_mismatched_sizes
model = ResNetForImageClassification.from_pretrained('microsoft/resnet-50', num_labels=3, ignore_mismatched_sizes=True)
# Update the classifier layer to match the number of labels
if hasattr(model, 'classifier'):
if isinstance(model.classifier, torch.nn.Sequential):
model.classifier[-1] = torch.nn.Linear(model.classifier[-1].in_features, 3) # Assuming 3 output classes
else:
model.classifier = torch.nn.Linear(model.classifier.in_features, 3) # In case it's a Linear layer directly
else:
print("Classifier layer not found")
model.train()
optimizer = AdamW(model.parameters(), lr=1e-4)
criterion = torch.nn.CrossEntropyLoss()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
for epoch in range(10): # Adjust epochs as needed
running_loss = 0.0
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(pixel_values=images).logits
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss / len(train_loader)
# Streamlit UI for Fine-tuning
st.title("Fine-tune ResNet for MRI/CT Scans Classification")
zip_file_url = "https://huggingface.co./spaces/Tanusree88/Segmentation_and_classification/resolve/main/neuroniiimages.zip"
if st.button("Start Training"):
extraction_dir = "extracted_files"
os.makedirs(extraction_dir, exist_ok=True)
# Download the zip file (placeholder)
zip_file = "neuroniiimages.zip" # Assuming you downloaded it with this name
# Extract zip file
extract_zip(zip_file, extraction_dir)
# Prepare dataset
image_paths, labels = prepare_dataset(extraction_dir)
dataset = CustomImageDataset(image_paths, labels)
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
# Fine-tune the classification model
final_loss = fine_tune_classification_model(train_loader)
st.write(f"Training Complete with Final Loss: {final_loss}")
# Segmentation function (using SegFormer)
def fine_tune_segmentation_model(train_loader):
# Load the Segformer model with ignore_mismatched_sizes
model = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0', num_labels=3, ignore_mismatched_sizes=True)
model.train()
optimizer = AdamW(model.parameters(), lr=1e-4)
criterion = torch.nn.CrossEntropyLoss()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
for epoch in range(10): # Adjust epochs as needed
running_loss = 0.0
for images, labels in train_loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(pixel_values=images).logits
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
return running_loss / len(train_loader)
# Add a button for segmentation training
if st.button("Start Segmentation Training"):
# Assuming the dataset for segmentation is prepared similarly
seg_train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
# Fine-tune the segmentation model
final_loss_seg = fine_tune_segmentation_model(seg_train_loader)
st.write(f"Segmentation Training Complete with Final Loss: {final_loss_seg}")