Tanusree88
commited on
Commit
•
87db8d4
1
Parent(s):
7ab14ef
Update app.py
Browse files
app.py
CHANGED
@@ -7,25 +7,11 @@ from transformers import ResNetForImageClassification, AdamW
|
|
7 |
from PIL import Image
|
8 |
from torch.utils.data import Dataset, DataLoader
|
9 |
import streamlit as st
|
10 |
-
import gradio as gr
|
11 |
-
import os
|
12 |
-
import zipfile
|
13 |
-
import numpy as np
|
14 |
-
import torch
|
15 |
-
from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor
|
16 |
-
from transformers import ResNetForImageClassification, AdamW
|
17 |
-
from PIL import Image
|
18 |
-
from torch.utils.data import Dataset, DataLoader
|
19 |
-
import streamlit as st
|
20 |
-
import gradio as gr
|
21 |
|
22 |
# Load feature extractor and model
|
23 |
feature_extractor = SegformerFeatureExtractor.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512')
|
24 |
segformer_model = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512')
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
# Function to extract zip files
|
30 |
def extract_zip(zip_file, extract_to):
|
31 |
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
|
@@ -34,7 +20,7 @@ def extract_zip(zip_file, extract_to):
|
|
34 |
# Preprocess images
|
35 |
def preprocess_image(image_path):
|
36 |
ext = os.path.splitext(image_path)[-1].lower()
|
37 |
-
|
38 |
if ext == '.npy':
|
39 |
image_data = np.load(image_path)
|
40 |
image_tensor = torch.tensor(image_data).float()
|
@@ -62,13 +48,19 @@ def prepare_dataset(extracted_folder):
|
|
62 |
image_paths = []
|
63 |
labels = []
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
folder_path = os.path.join(neuronii_path, disease_folder)
|
67 |
|
68 |
if not os.path.exists(folder_path):
|
69 |
print(f"Folder not found: {folder_path}")
|
70 |
continue
|
71 |
-
label = {'alzheimers_dataset': 0, 'parkinsons_dataset': 1, 'MSjpg': 2}[disease_folder]
|
72 |
|
73 |
for img_file in os.listdir(folder_path):
|
74 |
if img_file.endswith(('.npy', '.jpg', '.jpeg')):
|
@@ -97,9 +89,7 @@ class CustomImageDataset(Dataset):
|
|
97 |
def fine_tune_classification_model(train_loader):
|
98 |
# Load the ResNet model with ignore_mismatched_sizes
|
99 |
model = ResNetForImageClassification.from_pretrained('microsoft/resnet-50', num_labels=3, ignore_mismatched_sizes=True)
|
100 |
-
|
101 |
-
print(model) # Inspect the model structure
|
102 |
-
|
103 |
# Update the classifier layer to match the number of labels
|
104 |
if hasattr(model, 'classifier'):
|
105 |
if isinstance(model.classifier, torch.nn.Sequential):
|
@@ -116,7 +106,7 @@ def fine_tune_classification_model(train_loader):
|
|
116 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
117 |
model.to(device)
|
118 |
|
119 |
-
for epoch in range(10):
|
120 |
running_loss = 0.0
|
121 |
for images, labels in train_loader:
|
122 |
images, labels = images.to(device), labels.to(device)
|
@@ -164,7 +154,7 @@ def fine_tune_segmentation_model(train_loader):
|
|
164 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
165 |
model.to(device)
|
166 |
|
167 |
-
for epoch in range(10):
|
168 |
running_loss = 0.0
|
169 |
for images, labels in train_loader:
|
170 |
images, labels = images.to(device), labels.to(device)
|
@@ -185,3 +175,4 @@ if st.button("Start Segmentation Training"):
|
|
185 |
# Fine-tune the segmentation model
|
186 |
final_loss_seg = fine_tune_segmentation_model(seg_train_loader)
|
187 |
st.write(f"Segmentation Training Complete with Final Loss: {final_loss_seg}")
|
|
|
|
7 |
from PIL import Image
|
8 |
from torch.utils.data import Dataset, DataLoader
|
9 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Load feature extractor and model
|
12 |
feature_extractor = SegformerFeatureExtractor.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512')
|
13 |
segformer_model = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512')
|
14 |
|
|
|
|
|
|
|
15 |
# Function to extract zip files
|
16 |
def extract_zip(zip_file, extract_to):
|
17 |
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
|
|
|
20 |
# Preprocess images
|
21 |
def preprocess_image(image_path):
|
22 |
ext = os.path.splitext(image_path)[-1].lower()
|
23 |
+
|
24 |
if ext == '.npy':
|
25 |
image_data = np.load(image_path)
|
26 |
image_tensor = torch.tensor(image_data).float()
|
|
|
48 |
image_paths = []
|
49 |
labels = []
|
50 |
|
51 |
+
# Define the mapping of folders to labels
|
52 |
+
folder_label_mapping = {
|
53 |
+
'alzheimers_dataset': 0,
|
54 |
+
'parkinsons_dataset': 1,
|
55 |
+
'MSjpg': 2
|
56 |
+
}
|
57 |
+
|
58 |
+
for disease_folder, label in folder_label_mapping.items():
|
59 |
folder_path = os.path.join(neuronii_path, disease_folder)
|
60 |
|
61 |
if not os.path.exists(folder_path):
|
62 |
print(f"Folder not found: {folder_path}")
|
63 |
continue
|
|
|
64 |
|
65 |
for img_file in os.listdir(folder_path):
|
66 |
if img_file.endswith(('.npy', '.jpg', '.jpeg')):
|
|
|
89 |
def fine_tune_classification_model(train_loader):
|
90 |
# Load the ResNet model with ignore_mismatched_sizes
|
91 |
model = ResNetForImageClassification.from_pretrained('microsoft/resnet-50', num_labels=3, ignore_mismatched_sizes=True)
|
92 |
+
|
|
|
|
|
93 |
# Update the classifier layer to match the number of labels
|
94 |
if hasattr(model, 'classifier'):
|
95 |
if isinstance(model.classifier, torch.nn.Sequential):
|
|
|
106 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
107 |
model.to(device)
|
108 |
|
109 |
+
for epoch in range(10): # Adjust epochs as needed
|
110 |
running_loss = 0.0
|
111 |
for images, labels in train_loader:
|
112 |
images, labels = images.to(device), labels.to(device)
|
|
|
154 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
155 |
model.to(device)
|
156 |
|
157 |
+
for epoch in range(10): # Adjust epochs as needed
|
158 |
running_loss = 0.0
|
159 |
for images, labels in train_loader:
|
160 |
images, labels = images.to(device), labels.to(device)
|
|
|
175 |
# Fine-tune the segmentation model
|
176 |
final_loss_seg = fine_tune_segmentation_model(seg_train_loader)
|
177 |
st.write(f"Segmentation Training Complete with Final Loss: {final_loss_seg}")
|
178 |
+
|