Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
top_k, | |
seed, | |
): | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}, Frequency Penalty: {frequency_penalty}, Top-K: {top_k}, Seed: {seed}") | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
print(f"Added user message to context: {val[0]}") | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
print(f"Added assistant message to context: {val[1]}") | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
print("Sending request to OpenAI API.") | |
for message in client.chat.completions.create( | |
model="meta-llama/Llama-3.3-70B-Instruct", | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
top_k=top_k, | |
seed=seed, | |
messages=messages, | |
): | |
token = message.choices[0].delta.content | |
print(f"Received token: {token}") | |
response += token | |
yield response | |
print("Completed response generation.") | |
chatbot = gr.Chatbot(height=600) | |
print("Chatbot interface created.") | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="", label="System message"), | |
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-P", | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=0.0, | |
step=0.1, | |
label="Frequency Penalty", | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=100, | |
value=50, | |
step=1, | |
label="Top-K", | |
), | |
gr.Slider( | |
minimum=-1, | |
maximum=10000, | |
value=-1, | |
step=1, | |
label="Seed (-1 for random)", | |
), | |
], | |
fill_height=True, | |
chatbot=chatbot, | |
theme="Nymbo/Nymbo_Theme", | |
) | |
print("Gradio interface initialized.") | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch() |