File size: 2,944 Bytes
038f313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a64d68
 
 
038f313
 
 
 
3a64d68
038f313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a64d68
038f313
 
 
 
 
 
3a64d68
 
 
038f313
 
 
 
 
 
 
 
3a64d68
038f313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a64d68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
038f313
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import gradio as gr
from openai import OpenAI
import os

ACCESS_TOKEN = os.getenv("HF_TOKEN")

print("Access token loaded.")

client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)

print("OpenAI client initialized.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    top_k,
    seed,
):
    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}, Frequency Penalty: {frequency_penalty}, Top-K: {top_k}, Seed: {seed}")

    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
            print(f"Added user message to context: {val[0]}")
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
            print(f"Added assistant message to context: {val[1]}")

    messages.append({"role": "user", "content": message})

    response = ""
    print("Sending request to OpenAI API.")

    for message in client.chat.completions.create(
        model="meta-llama/Llama-3.3-70B-Instruct",
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        top_k=top_k,
        seed=seed,
        messages=messages,
    ):
        token = message.choices[0].delta.content
        print(f"Received token: {token}")
        response += token
        yield response

    print("Completed response generation.")

chatbot = gr.Chatbot(height=600)

print("Chatbot interface created.")

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="", label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-P",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=0.0,
            step=0.1,
            label="Frequency Penalty",
        ),
        gr.Slider(
            minimum=1,
            maximum=100,
            value=50,
            step=1,
            label="Top-K",
        ),
        gr.Slider(
            minimum=-1,
            maximum=10000,
            value=-1,
            step=1,
            label="Seed (-1 for random)",
        ),
    ],
    fill_height=True,
    chatbot=chatbot,
    theme="Nymbo/Nymbo_Theme",
)
print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch()