Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model, | |
selected_model | |
): | |
""" | |
Handles the chatbot response generation. | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Custom model: {custom_model}") | |
print(f"Selected model: {selected_model}") | |
# Convert seed to None if -1 (meaning random) | |
if seed == -1: | |
seed = None | |
# Construct the messages array required by the API | |
messages = [{"role": "system", "content": system_message}] | |
# Add conversation history to the context | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Determine which model to use | |
model_to_use = ( | |
custom_model.strip() | |
if custom_model.strip() != "" | |
else selected_model.strip() | |
) | |
print(f"Model selected for inference: {model_to_use}") | |
# Start with an empty string to build the response as tokens stream in | |
response = "" | |
print("Sending request to OpenAI API.") | |
# Make the streaming request to the HF Inference API via openai-like client | |
for message_chunk in client.chat.completions.create( | |
model=model_to_use, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
): | |
# Extract the token text from the response chunk | |
token_text = message_chunk.choices[0].delta.content | |
print(f"Received token: {token_text}") | |
response += token_text | |
yield response | |
print("Completed response generation.") | |
# Predefined list of placeholder models for the Featured Models accordion | |
models_list = [ | |
"meta-llama/Llama-3.3-70B-Instruct", | |
"bigscience/bloom-7b1", | |
"EleutherAI/gpt-neo-2.7B", | |
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", | |
"HuggingFace/distilgpt2", | |
] | |
# Function to filter models based on search input | |
def filter_models(search_term): | |
filtered_models = [m for m in models_list if search_term.lower() in m.lower()] | |
return gr.update(choices=filtered_models) | |
# Create a Chatbot component with a specified height | |
chatbot = gr.Chatbot(height=600) | |
print("Chatbot interface created.") | |
# Create the Gradio ChatInterface | |
# Added "Featured Models" accordion and integrated filtering | |
demo = gr.Interface( | |
fn=respond, | |
inputs=[ | |
gr.Textbox(value="", label="System message"), | |
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), | |
gr.Slider( | |
minimum=-2.0, | |
maximum=2.0, | |
value=0.0, | |
step=0.1, | |
label="Frequency Penalty" | |
), | |
gr.Slider( | |
minimum=-1, | |
maximum=65535, # Arbitrary upper limit for demonstration | |
value=-1, | |
step=1, | |
label="Seed (-1 for random)" | |
), | |
gr.Textbox( | |
value="", | |
label="Custom Model", | |
info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty.", | |
), | |
# Add Featured Models accordion | |
gr.Accordion("Featured Models", open=True, children=[ | |
gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1).change( | |
filter_models, inputs=["value"], outputs="choices" | |
), | |
gr.Radio( | |
label="Select a featured model", | |
value="meta-llama/Llama-3.3-70B-Instruct", | |
choices=models_list, | |
elem_id="model-radio", | |
) | |
]), | |
], | |
outputs=gr.Chatbot(height=600), | |
theme="Nymbo/Nymbo_Theme", | |
) | |
print("Gradio interface initialized.") | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch() |