HugChatWrap / app.py
K00B404's picture
Update app.py
03a5c5e verified
import gradio as gr
from huggingface_hub import InferenceClient
import time
# Initialize the client
client = InferenceClient("HuggingFaceH4/starchat2-15b-v0.1")
def respond(
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
model_name
):
"""
Generate chat responses using the specified model.
"""
# Update client if model changes
global client
client = InferenceClient(model_name)
messages = [{"role": "system", "content": system_message}]
# Build conversation history
for human_msg, assistant_msg in chat_history:
messages.append({"role": "user", "content": human_msg})
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
response = ""
try:
# Add user message to history immediately
chat_history = chat_history + [(message, None)]
yield chat_history
for token_data in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = token_data.choices[0].delta.content
response += token
# Update the last assistant message
chat_history[-1] = (message, response)
yield chat_history
except Exception as e:
error_msg = f"Error: {str(e)}"
chat_history[-1] = (message, error_msg)
yield chat_history
def create_chat_interface():
"""
Create and configure the Gradio interface
"""
# Default system message
default_system = '''
You are a pragmatic coding assistant specializing in Python. Your task is to strictly respond with **Python code only**, ensuring all explanations and comments are embedded within the script using **multi-line comment blocks** (`### or #`).
**Response Requirements:**
- **No external ### Explanation ### ** All descriptions, justifications, and context must be inside the script.
- **Follow OOP principles** where applicable, improving maintainability and extensibility.
- **Ensure compliance with PEP8 and autopep8 formatting.**
- **Enhance and refactor the provided script**, making it a more efficient, readable, and reusable # IMPROVED PYTHON CODE #.
- **At the end of every script, include a '### Future Features ###' comment block** outlining possible enhancements.
**Example Response Format:**
```python
# filename.py
# Module: Improved Script v1.0
# Description: [Brief explanation of script functionality]
# IMPROVED PYTHON CODE #
### Explanation ###
#- inside comment block.
### Future Features ###
#- Suggested improvement 1
#- Suggested improvement 2
```
Now, improve and enhance the following script:
'''
qwen_options_coder = ["0.5B", "1.5B", "3B", "7B", "14B", "32B", ]
# Available models
models = [
"Qwen/Qwen2.5-Coder-3B-Instruct",
"Qwen/Qwen2.5-Coder-1.5B-Instruct",
"HuggingFaceH4/zephyr-7b-beta",
"HuggingFaceH4/zephyr-7b-alpha",
"HuggingFaceH4/starchat2-15b-v0.1",
"meta-llama/Llama-2-70b-chat-hf",
"mistralai/Mixtral-8x7B-Instruct-v0.1"
]
# Create the interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🤖 Advanced AI Chatbot")
chatbot = gr.Chatbot(
height=600,
show_label=False,
container=True,
)
with gr.Row():
with gr.Column(scale=4):
msg = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
container=False
)
with gr.Column(scale=1, min_width=100):
send = gr.Button("Send")
with gr.Accordion("Settings", open=False):
system_msg = gr.Textbox(
label="System Message",
value=default_system,
lines=20
)
model = gr.Dropdown(
choices=models,
value=models[0],
label="Model"
)
with gr.Row():
with gr.Column():
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
max_tokens = gr.Slider(
minimum=50,
maximum=4096,
value=2048,
step=1,
label="Max Tokens"
)
with gr.Column():
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1,
label="Top P"
)
clear = gr.Button("Clear Chat")
# Handle sending messages
msg.submit(
respond,
[msg, chatbot, system_msg, max_tokens, temperature, top_p, model],
[chatbot]
).then(
lambda: "",
None,
msg,
queue=False
)
send.click(
respond,
[msg, chatbot, system_msg, max_tokens, temperature, top_p, model],
[chatbot]
).then(
lambda: "",
None,
msg,
queue=False
)
# Clear chat history
clear.click(lambda: None, None, chatbot, queue=False)
# Example prompts
gr.Examples(
examples=[
["Tell me a short story about a robot learning to paint."],
["Explain quantum computing in simple terms."],
["Write a haiku about artificial intelligence."]
],
inputs=msg
)
return demo
# Create and launch the interface
if __name__ == "__main__":
demo = create_chat_interface()
demo.queue()
demo.launch(
share=False, # Disable sharing on Spaces
)