File size: 6,424 Bytes
71516c7
 
 
 
 
 
 
 
 
268d349
71516c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268d349
d12971a
 
71516c7
 
 
 
 
d12971a
 
 
 
 
71516c7
 
 
 
 
 
d12971a
71516c7
d12971a
 
268d349
d12971a
71516c7
d12971a
 
268d349
71516c7
 
 
 
 
 
4d14c90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e979e74
71516c7
 
03a5c5e
4d14c90
 
 
71516c7
 
 
 
 
 
 
 
 
d12971a
 
 
 
 
 
71516c7
d12971a
71516c7
 
 
 
 
 
d12971a
 
 
 
 
 
 
03a5c5e
d12971a
 
 
 
 
 
 
 
 
 
 
 
 
 
71516c7
 
 
 
03a5c5e
71516c7
 
 
d12971a
71516c7
 
 
 
 
 
 
 
268d349
71516c7
 
 
d12971a
 
268d349
d12971a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71516c7
 
 
d12971a
71516c7
 
 
 
 
 
 
 
 
 
d12971a
71516c7
 
 
 
 
 
268d349
 
d12971a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
from huggingface_hub import InferenceClient
import time

# Initialize the client
client = InferenceClient("HuggingFaceH4/starchat2-15b-v0.1")

def respond(
    message,
    chat_history,
    system_message,
    max_tokens,
    temperature,
    top_p,
    model_name
):
    """
    Generate chat responses using the specified model.
    """
    # Update client if model changes
    global client
    client = InferenceClient(model_name)
    
    messages = [{"role": "system", "content": system_message}]
    
    # Build conversation history
    for human_msg, assistant_msg in chat_history:
        messages.append({"role": "user", "content": human_msg})
        messages.append({"role": "assistant", "content": assistant_msg})
    
    messages.append({"role": "user", "content": message})
    response = ""
    
    try:
        # Add user message to history immediately
        chat_history = chat_history + [(message, None)]
        yield chat_history
        
        for token_data in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        ):
            token = token_data.choices[0].delta.content
            response += token
            # Update the last assistant message
            chat_history[-1] = (message, response)
            yield chat_history
            
    except Exception as e:
        error_msg = f"Error: {str(e)}"
        chat_history[-1] = (message, error_msg)
        yield chat_history

def create_chat_interface():
    """
    Create and configure the Gradio interface
    """
    # Default system message
    default_system = '''
    You are a pragmatic coding assistant specializing in Python. Your task is to strictly respond with **Python code only**, ensuring all explanations and comments are embedded within the script using **multi-line comment blocks** (`### or #`).

    **Response Requirements:**  
    - **No external ### Explanation ### ** All descriptions, justifications, and context must be inside the script.  
    - **Follow OOP principles** where applicable, improving maintainability and extensibility.  
    - **Ensure compliance with PEP8 and autopep8 formatting.**  
    - **Enhance and refactor the provided script**, making it a more efficient, readable, and reusable # IMPROVED PYTHON CODE #.  
    - **At the end of every script, include a '### Future Features ###' comment block** outlining possible enhancements.  
    
    **Example Response Format:**  
    ```python
    # filename.py
    # Module: Improved Script v1.0
    # Description: [Brief explanation of script functionality]  
    
    # IMPROVED PYTHON CODE #
            
    ### Explanation ### 
    #- inside comment block.
    
    ### Future Features ###
    #- Suggested improvement 1
    #- Suggested improvement 2
    ```
    
    Now, improve and enhance the following script:
    '''
    qwen_options_coder = ["0.5B", "1.5B", "3B", "7B", "14B", "32B", ]
    # Available models
    models = [
        "Qwen/Qwen2.5-Coder-3B-Instruct",
        "Qwen/Qwen2.5-Coder-1.5B-Instruct",
        "HuggingFaceH4/zephyr-7b-beta",
        "HuggingFaceH4/zephyr-7b-alpha",
        "HuggingFaceH4/starchat2-15b-v0.1",
        "meta-llama/Llama-2-70b-chat-hf",
        "mistralai/Mixtral-8x7B-Instruct-v0.1"
    ]

    # Create the interface
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# 🤖 Advanced AI Chatbot")
        
        chatbot = gr.Chatbot(
            height=600,
            show_label=False,
            container=True,
        )
        
        with gr.Row():
            with gr.Column(scale=4):
                msg = gr.Textbox(
                    show_label=False,
                    placeholder="Type your message here...",
                    container=False
                )
                
            with gr.Column(scale=1, min_width=100):
                send = gr.Button("Send")
        
        with gr.Accordion("Settings", open=False):
            system_msg = gr.Textbox(
                label="System Message",
                value=default_system,
                lines=20
            )
            model = gr.Dropdown(
                choices=models,
                value=models[0],
                label="Model"
            )
            with gr.Row():
                with gr.Column():
                    temperature = gr.Slider(
                        minimum=0.1,
                        maximum=2.0,
                        value=0.7,
                        step=0.1,
                        label="Temperature"
                    )
                    max_tokens = gr.Slider(
                        minimum=50,
                        maximum=4096,
                        value=2048,
                        step=1,
                        label="Max Tokens"
                    )
                with gr.Column():
                    top_p = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        value=0.9,
                        step=0.1,
                        label="Top P"
                    )
                    clear = gr.Button("Clear Chat")

        # Handle sending messages
        msg.submit(
            respond,
            [msg, chatbot, system_msg, max_tokens, temperature, top_p, model],
            [chatbot]
        ).then(
            lambda: "",
            None,
            msg,
            queue=False
        )

        send.click(
            respond,
            [msg, chatbot, system_msg, max_tokens, temperature, top_p, model],
            [chatbot]
        ).then(
            lambda: "",
            None,
            msg,
            queue=False
        )
        
        # Clear chat history
        clear.click(lambda: None, None, chatbot, queue=False)
        
        # Example prompts
        gr.Examples(
            examples=[
                ["Tell me a short story about a robot learning to paint."],
                ["Explain quantum computing in simple terms."],
                ["Write a haiku about artificial intelligence."]
            ],
            inputs=msg
        )

    return demo

# Create and launch the interface
if __name__ == "__main__":
    demo = create_chat_interface()
    demo.queue()
    demo.launch(
        share=False,  # Disable sharing on Spaces
    )