Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,23 +10,29 @@ from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
16 |
|
17 |
-
|
18 |
-
pipe
|
19 |
-
pipe
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
MAX_SEED = np.iinfo(np.int32).max
|
26 |
MAX_IMAGE_SIZE = 2048
|
27 |
|
28 |
@spaces.GPU()
|
29 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, num_images=1, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
30 |
if randomize_seed:
|
31 |
seed = random.randint(0, MAX_SEED)
|
32 |
generator = torch.Generator().manual_seed(seed)
|
|
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
# Inicializar el modelo solo una vez y cargarlo en RAM y GPU
|
14 |
+
pipe = None
|
|
|
15 |
|
16 |
+
def load_model():
|
17 |
+
global pipe
|
18 |
+
if pipe is None:
|
19 |
+
with init_empty_weights():
|
20 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
21 |
+
# Cargar el modelo en la RAM y despachar los pesos a la GPU
|
22 |
+
pipe = load_checkpoint_and_dispatch(
|
23 |
+
pipe,
|
24 |
+
"black-forest-labs/FLUX.1-schnell",
|
25 |
+
device_map="auto", # Automatiza el uso de RAM y GPU
|
26 |
+
offload_folder=None, # Evita que se almacenen los pesos temporalmente en el disco
|
27 |
+
).to(device)
|
28 |
|
29 |
MAX_SEED = np.iinfo(np.int32).max
|
30 |
MAX_IMAGE_SIZE = 2048
|
31 |
|
32 |
@spaces.GPU()
|
33 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, num_images=1, progress=gr.Progress(track_tqdm=True)):
|
34 |
+
load_model() # Asegurarse de que el modelo esté cargado antes de la inferencia
|
35 |
+
|
36 |
if randomize_seed:
|
37 |
seed = random.randint(0, MAX_SEED)
|
38 |
generator = torch.Generator().manual_seed(seed)
|