Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -4,29 +4,46 @@ import random
|
|
4 |
import spaces
|
5 |
import torch
|
6 |
from diffusers import DiffusionPipeline
|
|
|
7 |
|
|
|
8 |
dtype = torch.bfloat16
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
MAX_IMAGE_SIZE = 2048
|
15 |
|
16 |
@spaces.GPU()
|
17 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
18 |
if randomize_seed:
|
19 |
seed = random.randint(0, MAX_SEED)
|
20 |
generator = torch.Generator().manual_seed(seed)
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
examples = [
|
32 |
"a tiny astronaut hatching from an egg on the moon",
|
@@ -61,7 +78,7 @@ with gr.Blocks(css=css) as demo:
|
|
61 |
|
62 |
run_button = gr.Button("Run", scale=0)
|
63 |
|
64 |
-
|
65 |
|
66 |
with gr.Accordion("Advanced Settings", open=False):
|
67 |
|
@@ -95,7 +112,6 @@ with gr.Blocks(css=css) as demo:
|
|
95 |
|
96 |
with gr.Row():
|
97 |
|
98 |
-
|
99 |
num_inference_steps = gr.Slider(
|
100 |
label="Number of inference steps",
|
101 |
minimum=1,
|
@@ -103,20 +119,28 @@ with gr.Blocks(css=css) as demo:
|
|
103 |
step=1,
|
104 |
value=4,
|
105 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
gr.Examples(
|
108 |
examples = examples,
|
109 |
fn = infer,
|
110 |
inputs = [prompt],
|
111 |
-
outputs = [
|
112 |
cache_examples="lazy"
|
113 |
)
|
114 |
|
115 |
gr.on(
|
116 |
triggers=[run_button.click, prompt.submit],
|
117 |
fn = infer,
|
118 |
-
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
|
119 |
-
outputs = [
|
120 |
)
|
121 |
|
122 |
-
demo.launch()
|
|
|
4 |
import spaces
|
5 |
import torch
|
6 |
from diffusers import DiffusionPipeline
|
7 |
+
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
8 |
|
9 |
+
# Configuración para usar bfloat16 y CUDA si está disponible
|
10 |
dtype = torch.bfloat16
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
# Inicialización del modelo en la RAM
|
14 |
+
with init_empty_weights():
|
15 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
16 |
+
|
17 |
+
# Cargar el modelo en la RAM y despachar los pesos a la GPU
|
18 |
+
pipe = load_checkpoint_and_dispatch(
|
19 |
+
pipe,
|
20 |
+
"black-forest-labs/FLUX.1-schnell",
|
21 |
+
device_map="auto", # Automatiza el uso de RAM y GPU
|
22 |
+
offload_folder=None, # Evita que se almacenen los pesos temporalmente en el disco
|
23 |
+
).to(device)
|
24 |
|
25 |
MAX_SEED = np.iinfo(np.int32).max
|
26 |
MAX_IMAGE_SIZE = 2048
|
27 |
|
28 |
@spaces.GPU()
|
29 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, num_images=1, progress=gr.Progress(track_tqdm=True)):
|
30 |
if randomize_seed:
|
31 |
seed = random.randint(0, MAX_SEED)
|
32 |
generator = torch.Generator().manual_seed(seed)
|
33 |
+
|
34 |
+
images = []
|
35 |
+
for _ in range(num_images):
|
36 |
+
image = pipe(
|
37 |
+
prompt = prompt,
|
38 |
+
width = width,
|
39 |
+
height = height,
|
40 |
+
num_inference_steps = num_inference_steps,
|
41 |
+
generator = generator,
|
42 |
+
guidance_scale=0.0
|
43 |
+
).images[0]
|
44 |
+
images.append(image)
|
45 |
+
|
46 |
+
return images, seed
|
47 |
|
48 |
examples = [
|
49 |
"a tiny astronaut hatching from an egg on the moon",
|
|
|
78 |
|
79 |
run_button = gr.Button("Run", scale=0)
|
80 |
|
81 |
+
results = gr.Gallery(label="Results", show_label=False, elem_id="image-gallery")
|
82 |
|
83 |
with gr.Accordion("Advanced Settings", open=False):
|
84 |
|
|
|
112 |
|
113 |
with gr.Row():
|
114 |
|
|
|
115 |
num_inference_steps = gr.Slider(
|
116 |
label="Number of inference steps",
|
117 |
minimum=1,
|
|
|
119 |
step=1,
|
120 |
value=4,
|
121 |
)
|
122 |
+
|
123 |
+
num_images = gr.Slider(
|
124 |
+
label="Number of images",
|
125 |
+
minimum=1,
|
126 |
+
maximum=300,
|
127 |
+
step=1,
|
128 |
+
value=1,
|
129 |
+
)
|
130 |
|
131 |
gr.Examples(
|
132 |
examples = examples,
|
133 |
fn = infer,
|
134 |
inputs = [prompt],
|
135 |
+
outputs = [results, seed],
|
136 |
cache_examples="lazy"
|
137 |
)
|
138 |
|
139 |
gr.on(
|
140 |
triggers=[run_button.click, prompt.submit],
|
141 |
fn = infer,
|
142 |
+
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps, num_images],
|
143 |
+
outputs = [results, seed]
|
144 |
)
|
145 |
|
146 |
+
demo.launch()
|