File size: 14,585 Bytes
49d4954
 
8e698e5
49d4954
 
 
 
 
 
 
0ded2d6
fb9dbfc
 
2c1a6cc
8e698e5
29fa1d0
8e698e5
fb9dbfc
 
 
2c1a6cc
fb9dbfc
 
49d4954
 
ac06db6
8e698e5
 
ac06db6
8e698e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c1a6cc
ac06db6
 
 
 
 
 
 
 
 
 
 
 
8e698e5
 
 
 
2c1a6cc
 
 
8e698e5
2c1a6cc
 
 
8e698e5
2c1a6cc
 
8e698e5
 
2c1a6cc
8e698e5
2c1a6cc
 
8e698e5
2c1a6cc
 
 
8e698e5
2c1a6cc
 
 
 
 
49d4954
8e698e5
2c1a6cc
 
8e698e5
7ffc337
8e698e5
 
2c1a6cc
 
8e698e5
2c1a6cc
 
8e698e5
2c1a6cc
 
8e698e5
2c1a6cc
 
8e698e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c1a6cc
 
 
 
 
 
 
 
 
 
 
8e698e5
9590121
8e698e5
 
 
2c1a6cc
 
 
 
 
 
 
 
 
 
 
 
 
76678b6
 
2c1a6cc
 
 
 
 
 
8e698e5
76678b6
2c1a6cc
 
 
76678b6
9590121
8e698e5
 
 
 
 
 
 
76678b6
2c1a6cc
 
 
 
8e698e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c1a6cc
 
 
 
0ded2d6
2c1a6cc
 
 
 
 
 
8e698e5
2c1a6cc
 
8e698e5
9590121
 
2c1a6cc
 
 
 
 
49d4954
 
2c1a6cc
49d4954
 
8e698e5
0ded2d6
2c1a6cc
 
 
 
8e698e5
 
0ded2d6
8e698e5
 
2c1a6cc
 
 
 
 
49d4954
2c1a6cc
 
 
 
 
8e698e5
2c1a6cc
8e698e5
2c1a6cc
 
8e698e5
2c1a6cc
 
8e698e5
 
 
 
 
 
 
 
 
 
 
2c1a6cc
 
 
 
 
 
 
 
8e698e5
2c1a6cc
 
 
 
 
 
 
 
49d4954
2c1a6cc
76678b6
49d4954
2c1a6cc
bb47725
 
 
 
 
49d4954
d800f84
 
 
8e698e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d800f84
 
a349a7f
8e698e5
 
 
 
a349a7f
d800f84
 
4236cfe
d800f84
4236cfe
d800f84
 
4236cfe
8e698e5
 
 
 
 
d800f84
 
 
 
4236cfe
 
 
 
 
8e698e5
 
4236cfe
 
 
8e698e5
4236cfe
 
8e698e5
 
4236cfe
d800f84
 
4236cfe
 
8e698e5
 
4236cfe
8e698e5
 
4236cfe
 
d800f84
 
8e698e5
 
4236cfe
0ded2d6
 
 
8e698e5
 
0ded2d6
4236cfe
8e698e5
 
 
 
 
49d4954
d800f84
8e698e5
a349a7f
 
 
 
d800f84
 
 
8e698e5
 
00a1ccb
8e698e5
a349a7f
8e698e5
 
 
 
 
 
 
 
 
 
49d4954
8e698e5
af7a5be
 
 
 
 
 
0ded2d6
 
8e698e5
bb47725
7ef91cf
49d4954
 
8e698e5
49d4954
9217369
8e698e5
 
6a37ffa
 
9217369
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import gradio as gr
import torch
import spaces
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn
import math
import logging
import sys
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
from huggingface_hub import snapshot_download

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)

MODEL_ID = "Djrango/Qwen2vl-Flux"
MODEL_CACHE_DIR = "model_cache"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.bfloat16

# Aspect ratio options
ASPECT_RATIOS = {
    "1:1": (1024, 1024),
    "16:9": (1344, 768),
    "9:16": (768, 1344),
    "2.4:1": (1536, 640),
    "3:4": (896, 1152),
    "4:3": (1152, 896),
}

class Qwen2Connector(nn.Module):
    def __init__(self, input_dim=3584, output_dim=4096):
        super().__init__()
        self.linear = nn.Linear(input_dim, output_dim)
    
    def forward(self, x):
        return self.linear(x)

# Download models if not present
if not os.path.exists(MODEL_CACHE_DIR):
    logger.info("Starting model download...")
    try:
        snapshot_download(
            repo_id=MODEL_ID,
            local_dir=MODEL_CACHE_DIR,
            local_dir_use_symlinks=False
        )
        logger.info("Model download completed successfully")
    except Exception as e:
        logger.error(f"Error downloading models: {str(e)}")
        raise

# Initialize models in global context
logger.info("Starting model loading...")

# Load smaller models to GPU
tokenizer = CLIPTokenizer.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/tokenizer"))
text_encoder = CLIPTextModel.from_pretrained(
    os.path.join(MODEL_CACHE_DIR, "flux/text_encoder")
).to(DTYPE).to(DEVICE)

text_encoder_two = T5EncoderModel.from_pretrained(
    os.path.join(MODEL_CACHE_DIR, "flux/text_encoder_2")
).to(DTYPE).to(DEVICE)

tokenizer_two = T5TokenizerFast.from_pretrained(
    os.path.join(MODEL_CACHE_DIR, "flux/tokenizer_2")
)

# Load larger models to CPU
vae = AutoencoderKL.from_pretrained(
    os.path.join(MODEL_CACHE_DIR, "flux/vae")
).to(DTYPE).cpu()

transformer = FluxTransformer2DModel.from_pretrained(
    os.path.join(MODEL_CACHE_DIR, "flux/transformer")
).to(DTYPE).cpu()

scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
    os.path.join(MODEL_CACHE_DIR, "flux/scheduler"),
    shift=1
)

# Load Qwen2VL to CPU
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
    os.path.join(MODEL_CACHE_DIR, "qwen2-vl")
).to(DTYPE).cpu()

# Load connector and embedder
connector = Qwen2Connector().to(DTYPE).cpu()
connector_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/connector.pt")
connector_state = torch.load(connector_path, map_location='cpu')
connector_state = {k.replace('module.', ''): v.to(DTYPE) for k, v in connector_state.items()}
connector.load_state_dict(connector_state)

t5_context_embedder = nn.Linear(4096, 3072).to(DTYPE).cpu()
t5_embedder_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/t5_embedder.pt")
t5_embedder_state = torch.load(t5_embedder_path, map_location='cpu')
t5_embedder_state = {k: v.to(DTYPE) for k, v in t5_embedder_state.items()}
t5_context_embedder.load_state_dict(t5_embedder_state)

# Set all models to eval mode
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, t5_context_embedder]:
    model.requires_grad_(False)
    model.eval()

logger.info("All models loaded successfully")

# Initialize processors and pipeline
qwen2vl_processor = AutoProcessor.from_pretrained(
    MODEL_ID,
    subfolder="qwen2-vl",
    min_pixels=256*28*28,
    max_pixels=256*28*28
)

pipeline = FluxPipeline(
    transformer=transformer,
    scheduler=scheduler,
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
)

def process_image(image):
    """Process image with Qwen2VL model"""
    try:
        # Move Qwen2VL models to GPU
        logger.info("Moving Qwen2VL models to GPU...")
        qwen2vl.to(DEVICE)
        connector.to(DEVICE)
        
        message = [
            {
                "role": "user",
                "content": [
                    {"type": "image", "image": image},
                    {"type": "text", "text": "Describe this image."},
                ]
            }
        ]
        text = qwen2vl_processor.apply_chat_template(
            message, 
            tokenize=False, 
            add_generation_prompt=True
        )

        with torch.no_grad():
            inputs = qwen2vl_processor(
                text=[text], 
                images=[image], 
                padding=True, 
                return_tensors="pt"
            ).to(DEVICE)
            
            output_hidden_state, image_token_mask, image_grid_thw = qwen2vl(**inputs)
            image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
            image_hidden_state = connector(image_hidden_state)
            
            result = (image_hidden_state.cpu(), image_grid_thw)
        
        # Move models back to CPU
        qwen2vl.cpu()
        connector.cpu()
        torch.cuda.empty_cache()
        
        return result
            
    except Exception as e:
        logger.error(f"Error in process_image: {str(e)}")
        raise

def resize_image(img, max_pixels=1050000):
    if not isinstance(img, Image.Image):
        img = Image.fromarray(img)
    
    width, height = img.size
    num_pixels = width * height
    
    if num_pixels > max_pixels:
        scale = math.sqrt(max_pixels / num_pixels)
        new_width = int(width * scale)
        new_height = int(height * scale)
        new_width = new_width - (new_width % 8)
        new_height = new_height - (new_height % 8)
        img = img.resize((new_width, new_height), Image.LANCZOS)
    
    return img

def compute_t5_text_embeddings(prompt):
    """Compute T5 embeddings for text prompt"""
    if prompt == "":
        return None
        
    text_inputs = tokenizer_two(
        prompt,
        padding="max_length",
        max_length=256,
        truncation=True,
        return_tensors="pt"
    ).to(DEVICE)
    
    prompt_embeds = text_encoder_two(text_inputs.input_ids)[0]
    prompt_embeds = t5_context_embedder.to(DEVICE)(prompt_embeds)
    t5_context_embedder.cpu()
    
    return prompt_embeds

def compute_text_embeddings(prompt=""):
    with torch.no_grad():
        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=77,
            truncation=True,
            return_tensors="pt"
        ).to(DEVICE)

        prompt_embeds = text_encoder(
            text_inputs.input_ids,
            output_hidden_states=False
        )
        pooled_prompt_embeds = prompt_embeds.pooler_output
        return pooled_prompt_embeds

@spaces.GPU(duration=75)
def generate(input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None, aspect_ratio="1:1", progress=gr.Progress(track_tqdm=True)):
    try:
        logger.info(f"Starting generation with prompt: {prompt}")
        
        if input_image is None:
            raise ValueError("No input image provided")
            
        if seed is not None:
            torch.manual_seed(seed)
            logger.info(f"Set random seed to: {seed}")
             
        # Process image with Qwen2VL
        logger.info("Processing input image with Qwen2VL...")
        qwen2_hidden_state, image_grid_thw = process_image(input_image)
        logger.info("Image processing completed")
        
        # Compute text embeddings
        logger.info("Computing text embeddings...")
        pooled_prompt_embeds = compute_text_embeddings(prompt)
        t5_prompt_embeds = compute_t5_text_embeddings(prompt)
        logger.info("Text embeddings computed")
        
        # Move Transformer and VAE to GPU
        logger.info("Moving Transformer and VAE to GPU...")
        transformer.to(DEVICE)
        vae.to(DEVICE)
        
        # Update pipeline models
        pipeline.transformer = transformer
        pipeline.vae = vae
        logger.info("Models moved to GPU")
        
        # Get dimensions
        width, height = ASPECT_RATIOS[aspect_ratio]
        logger.info(f"Using dimensions: {width}x{height}")
        
        try:
            logger.info("Starting image generation...")
            output_images = pipeline(
                prompt_embeds=qwen2_hidden_state.to(DEVICE).repeat(num_images, 1, 1),
                pooled_prompt_embeds=pooled_prompt_embeds,
                t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                height=height,
                width=width,
            ).images
            logger.info("Image generation completed")
            
            return output_images
            
        except Exception as e:
            raise RuntimeError(f"Error generating images: {str(e)}")
            
    except Exception as e:
        logger.error(f"Error during generation: {str(e)}")
        raise gr.Error(f"Generation failed: {str(e)}")

# Create Gradio interface
with gr.Blocks(
    theme=gr.themes.Soft(),
    css="""
        .container { 
            max-width: 1200px; 
            margin: auto;
        }
        .header { 
            text-align: center; 
            margin: 20px 0 40px 0;
            padding: 20px;
            background: #f7f7f7;
            border-radius: 12px;
        }
        .param-row {
            padding: 10px 0;
        }
        footer {
            margin-top: 40px;
            padding: 20px;
            border-top: 1px solid #eee;
        }
    """
) as demo:
    with gr.Column(elem_classes="container"):
        gr.Markdown(
            """# 🎨 Qwen2vl-Flux Image Variation Demo
Generate creative variations of your images with optional text guidance"""
        )
        
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                input_image = gr.Image(
                    label="Upload Your Image",
                    type="pil",
                    height=384,
                    sources=["upload", "clipboard"]
                )
                prompt = gr.Textbox(
                    label="Text Prompt (Optional)",
                    placeholder="As Long As Possible...",
                    lines=3
                )
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Group():
                        
                        with gr.Row(elem_classes="param-row"):
                            guidance = gr.Slider(
                                minimum=1,
                                maximum=10,
                                value=3.5,
                                step=0.5,
                                label="Guidance Scale",
                                info="Higher values follow prompt more closely"
                            )
                            steps = gr.Slider(
                                minimum=1,
                                maximum=50,
                                value=28,
                                step=1,
                                label="Sampling Steps",
                                info="More steps = better quality but slower"
                            )
                            
                        with gr.Row(elem_classes="param-row"):
                            num_images = gr.Slider(
                                minimum=1,
                                maximum=4,
                                value=1,
                                step=1,
                                label="Number of Images",
                                info="Generate multiple variations at once"
                            )
                            seed = gr.Number(
                                label="Random Seed",
                                value=None,
                                precision=0,
                                info="Set for reproducible results"
                            )
                            aspect_ratio = gr.Radio(
                                label="Aspect Ratio",
                                choices=["1:1", "16:9", "9:16", "2.4:1", "3:4", "4:3"],
                                value="1:1",
                                info="Choose aspect ratio for generated images"
                            )
                
                submit_btn = gr.Button(
                    "🎨 Generate Variations",
                    variant="primary",
                    size="lg"
                )
            
            with gr.Column(scale=1):
                # Output Section
                output_gallery = gr.Gallery(
                    label="Generated Variations",
                    columns=2,
                    rows=2,
                    height=700,
                    object_fit="contain",
                    show_label=True,
                    allow_preview=True,
                    preview=True
                )
                error_message = gr.Textbox(visible=False)
        
        with gr.Row(elem_classes="footer"):
            gr.Markdown("""
                ### Tips:
                - πŸ“Έ Upload any image to get started
                - πŸ’‘ Add an optional text prompt to guide the generation
                - 🎯 Adjust guidance scale to control prompt influence
                - βš™οΈ Increase steps for higher quality
                - 🎲 Use seeds for reproducible results
            """)
    
    submit_btn.click(
        fn=generate,
        inputs=[
            input_image,
            prompt,
            guidance,
            steps,
            num_images,
            seed,
            aspect_ratio
        ], 
        outputs=[output_gallery],
        show_progress=True
    )

# Launch the app
if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",  # Listen on all network interfaces
        server_port=7860,       # Use a specific port
        share=False,            # Disable public URL sharing
        ssr_mode=False          # Fixes bug for some users
    )