Spaces:
Runtime error
Runtime error
File size: 14,585 Bytes
49d4954 8e698e5 49d4954 0ded2d6 fb9dbfc 2c1a6cc 8e698e5 29fa1d0 8e698e5 fb9dbfc 2c1a6cc fb9dbfc 49d4954 ac06db6 8e698e5 ac06db6 8e698e5 2c1a6cc ac06db6 8e698e5 2c1a6cc 8e698e5 2c1a6cc 8e698e5 2c1a6cc 8e698e5 2c1a6cc 8e698e5 2c1a6cc 8e698e5 2c1a6cc 8e698e5 2c1a6cc 49d4954 8e698e5 2c1a6cc 8e698e5 7ffc337 8e698e5 2c1a6cc 8e698e5 2c1a6cc 8e698e5 2c1a6cc 8e698e5 2c1a6cc 8e698e5 2c1a6cc 8e698e5 9590121 8e698e5 2c1a6cc 76678b6 2c1a6cc 8e698e5 76678b6 2c1a6cc 76678b6 9590121 8e698e5 76678b6 2c1a6cc 8e698e5 2c1a6cc 0ded2d6 2c1a6cc 8e698e5 2c1a6cc 8e698e5 9590121 2c1a6cc 49d4954 2c1a6cc 49d4954 8e698e5 0ded2d6 2c1a6cc 8e698e5 0ded2d6 8e698e5 2c1a6cc 49d4954 2c1a6cc 8e698e5 2c1a6cc 8e698e5 2c1a6cc 8e698e5 2c1a6cc 8e698e5 2c1a6cc 8e698e5 2c1a6cc 49d4954 2c1a6cc 76678b6 49d4954 2c1a6cc bb47725 49d4954 d800f84 8e698e5 d800f84 a349a7f 8e698e5 a349a7f d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe 8e698e5 d800f84 4236cfe 8e698e5 4236cfe 8e698e5 4236cfe 8e698e5 4236cfe d800f84 4236cfe 8e698e5 4236cfe 8e698e5 4236cfe d800f84 8e698e5 4236cfe 0ded2d6 8e698e5 0ded2d6 4236cfe 8e698e5 49d4954 d800f84 8e698e5 a349a7f d800f84 8e698e5 00a1ccb 8e698e5 a349a7f 8e698e5 49d4954 8e698e5 af7a5be 0ded2d6 8e698e5 bb47725 7ef91cf 49d4954 8e698e5 49d4954 9217369 8e698e5 6a37ffa 9217369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import gradio as gr
import torch
import spaces
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn
import math
import logging
import sys
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
from huggingface_hub import snapshot_download
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
MODEL_ID = "Djrango/Qwen2vl-Flux"
MODEL_CACHE_DIR = "model_cache"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.bfloat16
# Aspect ratio options
ASPECT_RATIOS = {
"1:1": (1024, 1024),
"16:9": (1344, 768),
"9:16": (768, 1344),
"2.4:1": (1536, 640),
"3:4": (896, 1152),
"4:3": (1152, 896),
}
class Qwen2Connector(nn.Module):
def __init__(self, input_dim=3584, output_dim=4096):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
# Download models if not present
if not os.path.exists(MODEL_CACHE_DIR):
logger.info("Starting model download...")
try:
snapshot_download(
repo_id=MODEL_ID,
local_dir=MODEL_CACHE_DIR,
local_dir_use_symlinks=False
)
logger.info("Model download completed successfully")
except Exception as e:
logger.error(f"Error downloading models: {str(e)}")
raise
# Initialize models in global context
logger.info("Starting model loading...")
# Load smaller models to GPU
tokenizer = CLIPTokenizer.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/tokenizer"))
text_encoder = CLIPTextModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder")
).to(DTYPE).to(DEVICE)
text_encoder_two = T5EncoderModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder_2")
).to(DTYPE).to(DEVICE)
tokenizer_two = T5TokenizerFast.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/tokenizer_2")
)
# Load larger models to CPU
vae = AutoencoderKL.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/vae")
).to(DTYPE).cpu()
transformer = FluxTransformer2DModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/transformer")
).to(DTYPE).cpu()
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/scheduler"),
shift=1
)
# Load Qwen2VL to CPU
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "qwen2-vl")
).to(DTYPE).cpu()
# Load connector and embedder
connector = Qwen2Connector().to(DTYPE).cpu()
connector_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/connector.pt")
connector_state = torch.load(connector_path, map_location='cpu')
connector_state = {k.replace('module.', ''): v.to(DTYPE) for k, v in connector_state.items()}
connector.load_state_dict(connector_state)
t5_context_embedder = nn.Linear(4096, 3072).to(DTYPE).cpu()
t5_embedder_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/t5_embedder.pt")
t5_embedder_state = torch.load(t5_embedder_path, map_location='cpu')
t5_embedder_state = {k: v.to(DTYPE) for k, v in t5_embedder_state.items()}
t5_context_embedder.load_state_dict(t5_embedder_state)
# Set all models to eval mode
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, t5_context_embedder]:
model.requires_grad_(False)
model.eval()
logger.info("All models loaded successfully")
# Initialize processors and pipeline
qwen2vl_processor = AutoProcessor.from_pretrained(
MODEL_ID,
subfolder="qwen2-vl",
min_pixels=256*28*28,
max_pixels=256*28*28
)
pipeline = FluxPipeline(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
def process_image(image):
"""Process image with Qwen2VL model"""
try:
# Move Qwen2VL models to GPU
logger.info("Moving Qwen2VL models to GPU...")
qwen2vl.to(DEVICE)
connector.to(DEVICE)
message = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Describe this image."},
]
}
]
text = qwen2vl_processor.apply_chat_template(
message,
tokenize=False,
add_generation_prompt=True
)
with torch.no_grad():
inputs = qwen2vl_processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt"
).to(DEVICE)
output_hidden_state, image_token_mask, image_grid_thw = qwen2vl(**inputs)
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
image_hidden_state = connector(image_hidden_state)
result = (image_hidden_state.cpu(), image_grid_thw)
# Move models back to CPU
qwen2vl.cpu()
connector.cpu()
torch.cuda.empty_cache()
return result
except Exception as e:
logger.error(f"Error in process_image: {str(e)}")
raise
def resize_image(img, max_pixels=1050000):
if not isinstance(img, Image.Image):
img = Image.fromarray(img)
width, height = img.size
num_pixels = width * height
if num_pixels > max_pixels:
scale = math.sqrt(max_pixels / num_pixels)
new_width = int(width * scale)
new_height = int(height * scale)
new_width = new_width - (new_width % 8)
new_height = new_height - (new_height % 8)
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
def compute_t5_text_embeddings(prompt):
"""Compute T5 embeddings for text prompt"""
if prompt == "":
return None
text_inputs = tokenizer_two(
prompt,
padding="max_length",
max_length=256,
truncation=True,
return_tensors="pt"
).to(DEVICE)
prompt_embeds = text_encoder_two(text_inputs.input_ids)[0]
prompt_embeds = t5_context_embedder.to(DEVICE)(prompt_embeds)
t5_context_embedder.cpu()
return prompt_embeds
def compute_text_embeddings(prompt=""):
with torch.no_grad():
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt"
).to(DEVICE)
prompt_embeds = text_encoder(
text_inputs.input_ids,
output_hidden_states=False
)
pooled_prompt_embeds = prompt_embeds.pooler_output
return pooled_prompt_embeds
@spaces.GPU(duration=75)
def generate(input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None, aspect_ratio="1:1", progress=gr.Progress(track_tqdm=True)):
try:
logger.info(f"Starting generation with prompt: {prompt}")
if input_image is None:
raise ValueError("No input image provided")
if seed is not None:
torch.manual_seed(seed)
logger.info(f"Set random seed to: {seed}")
# Process image with Qwen2VL
logger.info("Processing input image with Qwen2VL...")
qwen2_hidden_state, image_grid_thw = process_image(input_image)
logger.info("Image processing completed")
# Compute text embeddings
logger.info("Computing text embeddings...")
pooled_prompt_embeds = compute_text_embeddings(prompt)
t5_prompt_embeds = compute_t5_text_embeddings(prompt)
logger.info("Text embeddings computed")
# Move Transformer and VAE to GPU
logger.info("Moving Transformer and VAE to GPU...")
transformer.to(DEVICE)
vae.to(DEVICE)
# Update pipeline models
pipeline.transformer = transformer
pipeline.vae = vae
logger.info("Models moved to GPU")
# Get dimensions
width, height = ASPECT_RATIOS[aspect_ratio]
logger.info(f"Using dimensions: {width}x{height}")
try:
logger.info("Starting image generation...")
output_images = pipeline(
prompt_embeds=qwen2_hidden_state.to(DEVICE).repeat(num_images, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
logger.info("Image generation completed")
return output_images
except Exception as e:
raise RuntimeError(f"Error generating images: {str(e)}")
except Exception as e:
logger.error(f"Error during generation: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Create Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.container {
max-width: 1200px;
margin: auto;
}
.header {
text-align: center;
margin: 20px 0 40px 0;
padding: 20px;
background: #f7f7f7;
border-radius: 12px;
}
.param-row {
padding: 10px 0;
}
footer {
margin-top: 40px;
padding: 20px;
border-top: 1px solid #eee;
}
"""
) as demo:
with gr.Column(elem_classes="container"):
gr.Markdown(
"""# π¨ Qwen2vl-Flux Image Variation Demo
Generate creative variations of your images with optional text guidance"""
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
input_image = gr.Image(
label="Upload Your Image",
type="pil",
height=384,
sources=["upload", "clipboard"]
)
prompt = gr.Textbox(
label="Text Prompt (Optional)",
placeholder="As Long As Possible...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
with gr.Row(elem_classes="param-row"):
guidance = gr.Slider(
minimum=1,
maximum=10,
value=3.5,
step=0.5,
label="Guidance Scale",
info="Higher values follow prompt more closely"
)
steps = gr.Slider(
minimum=1,
maximum=50,
value=28,
step=1,
label="Sampling Steps",
info="More steps = better quality but slower"
)
with gr.Row(elem_classes="param-row"):
num_images = gr.Slider(
minimum=1,
maximum=4,
value=1,
step=1,
label="Number of Images",
info="Generate multiple variations at once"
)
seed = gr.Number(
label="Random Seed",
value=None,
precision=0,
info="Set for reproducible results"
)
aspect_ratio = gr.Radio(
label="Aspect Ratio",
choices=["1:1", "16:9", "9:16", "2.4:1", "3:4", "4:3"],
value="1:1",
info="Choose aspect ratio for generated images"
)
submit_btn = gr.Button(
"π¨ Generate Variations",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
# Output Section
output_gallery = gr.Gallery(
label="Generated Variations",
columns=2,
rows=2,
height=700,
object_fit="contain",
show_label=True,
allow_preview=True,
preview=True
)
error_message = gr.Textbox(visible=False)
with gr.Row(elem_classes="footer"):
gr.Markdown("""
### Tips:
- πΈ Upload any image to get started
- π‘ Add an optional text prompt to guide the generation
- π― Adjust guidance scale to control prompt influence
- βοΈ Increase steps for higher quality
- π² Use seeds for reproducible results
""")
submit_btn.click(
fn=generate,
inputs=[
input_image,
prompt,
guidance,
steps,
num_images,
seed,
aspect_ratio
],
outputs=[output_gallery],
show_progress=True
)
# Launch the app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0", # Listen on all network interfaces
server_port=7860, # Use a specific port
share=False, # Disable public URL sharing
ssr_mode=False # Fixes bug for some users
) |