Spaces:
Runtime error
Runtime error
erwold
commited on
Commit
·
76678b6
1
Parent(s):
bb47725
Initial Commit
Browse files
app.py
CHANGED
@@ -13,7 +13,6 @@ import sys
|
|
13 |
|
14 |
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
|
15 |
from huggingface_hub import snapshot_download
|
16 |
-
import spaces
|
17 |
|
18 |
# 设置日志
|
19 |
logging.basicConfig(
|
@@ -78,42 +77,53 @@ class FluxInterface:
|
|
78 |
return
|
79 |
|
80 |
logger.info("Starting model loading...")
|
81 |
-
# 3. 显式设置 PyTorch 缓存分配器的行为
|
82 |
-
torch.cuda.set_per_process_memory_fraction(0.95) # 允许使用95%的显存
|
83 |
-
torch.cuda.max_memory_allocated = lambda *args, **kwargs: 0 # 忽略已分配内存的限制
|
84 |
|
85 |
-
#
|
86 |
tokenizer = CLIPTokenizer.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/tokenizer"))
|
87 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
88 |
-
|
89 |
-
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/scheduler"), shift=1)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
|
99 |
-
#
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
connector_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/connector.pt")
|
102 |
connector_state = torch.load(connector_path, map_location='cpu')
|
103 |
-
connector_state = {k: v.to(self.dtype) for k, v in connector_state.items()}
|
104 |
connector.load_state_dict(connector_state)
|
105 |
-
|
106 |
-
|
107 |
-
# 加载 T5 embedder
|
108 |
-
self.t5_context_embedder = nn.Linear(4096, 3072).to(self.dtype).to(self.device)
|
109 |
t5_embedder_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/t5_embedder.pt")
|
110 |
t5_embedder_state = torch.load(t5_embedder_path, map_location='cpu')
|
111 |
-
t5_embedder_state = {k: v.to(self.dtype) for k, v in t5_embedder_state.items()}
|
112 |
self.t5_context_embedder.load_state_dict(t5_embedder_state)
|
113 |
-
self.t5_context_embedder = self.t5_context_embedder.to(self.device)
|
114 |
|
115 |
-
#
|
116 |
-
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl,
|
|
|
117 |
model.requires_grad_(False)
|
118 |
model.eval()
|
119 |
|
@@ -133,9 +143,9 @@ class FluxInterface:
|
|
133 |
|
134 |
# Initialize processor and pipeline
|
135 |
self.qwen2vl_processor = AutoProcessor.from_pretrained(
|
136 |
-
self.MODEL_ID,
|
137 |
subfolder="qwen2-vl",
|
138 |
-
min_pixels=256*28*28,
|
139 |
max_pixels=256*28*28
|
140 |
)
|
141 |
|
@@ -145,7 +155,61 @@ class FluxInterface:
|
|
145 |
vae=vae,
|
146 |
text_encoder=text_encoder,
|
147 |
tokenizer=tokenizer,
|
148 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
def resize_image(self, img, max_pixels=1050000):
|
151 |
if not isinstance(img, Image.Image):
|
@@ -163,28 +227,7 @@ class FluxInterface:
|
|
163 |
img = img.resize((new_width, new_height), Image.LANCZOS)
|
164 |
|
165 |
return img
|
166 |
-
|
167 |
-
# [Previous methods remain unchanged...]
|
168 |
-
def process_image(self, image):
|
169 |
-
message = [
|
170 |
-
{
|
171 |
-
"role": "user",
|
172 |
-
"content": [
|
173 |
-
{"type": "image", "image": image},
|
174 |
-
{"type": "text", "text": "Describe this image."},
|
175 |
-
]
|
176 |
-
}
|
177 |
-
]
|
178 |
-
text = self.qwen2vl_processor.apply_chat_template(message, tokenize=False, add_generation_prompt=True)
|
179 |
-
|
180 |
-
with torch.no_grad():
|
181 |
-
inputs = self.qwen2vl_processor(text=[text], images=[image], padding=True, return_tensors="pt").to(self.device)
|
182 |
-
output_hidden_state, image_token_mask, image_grid_thw = self.models['qwen2vl'](**inputs)
|
183 |
-
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
|
184 |
-
image_hidden_state = self.models['connector'](image_hidden_state)
|
185 |
-
|
186 |
-
return image_hidden_state, image_grid_thw
|
187 |
-
|
188 |
def compute_t5_text_embeddings(self, prompt):
|
189 |
"""Compute T5 embeddings for text prompt"""
|
190 |
if prompt == "":
|
@@ -222,50 +265,39 @@ class FluxInterface:
|
|
222 |
|
223 |
return pooled_prompt_embeds
|
224 |
|
225 |
-
|
226 |
-
|
227 |
try:
|
228 |
-
logger.info(f"Starting generation with prompt: {prompt}
|
229 |
|
230 |
if input_image is None:
|
231 |
raise ValueError("No input image provided")
|
232 |
|
233 |
if seed is not None:
|
234 |
torch.manual_seed(seed)
|
235 |
-
|
236 |
-
|
237 |
-
self.
|
238 |
-
logger.info("Models loaded successfully")
|
239 |
|
240 |
-
#
|
241 |
-
|
242 |
-
|
243 |
-
width, height = ASPECT_RATIOS[aspect_ratio]
|
244 |
-
logger.info(f"Using dimensions: {width}x{height}")
|
245 |
|
246 |
-
#
|
247 |
-
|
248 |
-
|
249 |
-
logger.info(f"Input image resized to: {input_image.size}")
|
250 |
-
qwen2_hidden_state, image_grid_thw = self.process_image(input_image)
|
251 |
-
logger.info("Input image processed successfully")
|
252 |
-
except Exception as e:
|
253 |
-
raise RuntimeError(f"Error processing input image: {str(e)}")
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
# Get T5 embeddings if prompt is provided
|
260 |
-
t5_prompt_embeds = self.compute_t5_text_embeddings(prompt)
|
261 |
-
logger.info("T5 prompt embeddings computed")
|
262 |
-
except Exception as e:
|
263 |
-
raise RuntimeError(f"Error computing embeddings: {str(e)}")
|
264 |
|
265 |
-
#
|
|
|
|
|
|
|
266 |
try:
|
267 |
output_images = self.pipeline(
|
268 |
-
prompt_embeds=qwen2_hidden_state.repeat(num_images, 1, 1),
|
269 |
pooled_prompt_embeds=pooled_prompt_embeds,
|
270 |
t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
|
271 |
num_inference_steps=num_inference_steps,
|
@@ -274,10 +306,16 @@ class FluxInterface:
|
|
274 |
width=width,
|
275 |
).images
|
276 |
|
277 |
-
|
|
|
|
|
|
|
|
|
278 |
return output_images
|
|
|
279 |
except Exception as e:
|
280 |
raise RuntimeError(f"Error generating images: {str(e)}")
|
|
|
281 |
except Exception as e:
|
282 |
logger.error(f"Error during generation: {str(e)}")
|
283 |
raise gr.Error(f"Generation failed: {str(e)}")
|
|
|
13 |
|
14 |
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
|
15 |
from huggingface_hub import snapshot_download
|
|
|
16 |
|
17 |
# 设置日志
|
18 |
logging.basicConfig(
|
|
|
77 |
return
|
78 |
|
79 |
logger.info("Starting model loading...")
|
|
|
|
|
|
|
80 |
|
81 |
+
# 1. 首先加载较小的模型到GPU
|
82 |
tokenizer = CLIPTokenizer.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/tokenizer"))
|
83 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
84 |
+
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder")
|
85 |
+
).to(self.dtype).to(self.device)
|
86 |
|
87 |
+
text_encoder_two = T5EncoderModel.from_pretrained(
|
88 |
+
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder_2")
|
89 |
+
).to(self.dtype).to(self.device)
|
|
|
90 |
|
91 |
+
tokenizer_two = T5TokenizerFast.from_pretrained(
|
92 |
+
os.path.join(MODEL_CACHE_DIR, "flux/tokenizer_2"))
|
93 |
|
94 |
+
# 2. 将大模型初始加载到CPU
|
95 |
+
vae = AutoencoderKL.from_pretrained(
|
96 |
+
os.path.join(MODEL_CACHE_DIR, "flux/vae")
|
97 |
+
).to(torch.float32).cpu()
|
98 |
+
|
99 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
100 |
+
os.path.join(MODEL_CACHE_DIR, "flux/transformer")
|
101 |
+
).to(torch.float32).cpu()
|
102 |
+
|
103 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
|
104 |
+
os.path.join(MODEL_CACHE_DIR, "flux/scheduler"),
|
105 |
+
shift=1
|
106 |
+
)
|
107 |
+
|
108 |
+
# 3. Qwen2VL初始加载到CPU
|
109 |
+
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
|
110 |
+
os.path.join(MODEL_CACHE_DIR, "qwen2-vl")
|
111 |
+
).to(torch.float32).cpu()
|
112 |
+
|
113 |
+
# 4. 加载connector和embedder到CPU
|
114 |
+
connector = Qwen2Connector().to(torch.float32).cpu()
|
115 |
connector_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/connector.pt")
|
116 |
connector_state = torch.load(connector_path, map_location='cpu')
|
|
|
117 |
connector.load_state_dict(connector_state)
|
118 |
+
|
119 |
+
self.t5_context_embedder = nn.Linear(4096, 3072).to(torch.float32).cpu()
|
|
|
|
|
120 |
t5_embedder_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/t5_embedder.pt")
|
121 |
t5_embedder_state = torch.load(t5_embedder_path, map_location='cpu')
|
|
|
122 |
self.t5_context_embedder.load_state_dict(t5_embedder_state)
|
|
|
123 |
|
124 |
+
# 5. 设置所有模型为eval模式
|
125 |
+
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl,
|
126 |
+
connector, self.t5_context_embedder]:
|
127 |
model.requires_grad_(False)
|
128 |
model.eval()
|
129 |
|
|
|
143 |
|
144 |
# Initialize processor and pipeline
|
145 |
self.qwen2vl_processor = AutoProcessor.from_pretrained(
|
146 |
+
self.MODEL_ID,
|
147 |
subfolder="qwen2-vl",
|
148 |
+
min_pixels=256*28*28,
|
149 |
max_pixels=256*28*28
|
150 |
)
|
151 |
|
|
|
155 |
vae=vae,
|
156 |
text_encoder=text_encoder,
|
157 |
tokenizer=tokenizer,
|
158 |
+
)
|
159 |
+
|
160 |
+
def move_to_device(self, model, device):
|
161 |
+
"""Helper function to move model to specified device"""
|
162 |
+
if hasattr(model, 'to'):
|
163 |
+
return model.to(device)
|
164 |
+
return model
|
165 |
+
|
166 |
+
def process_image(self, image):
|
167 |
+
"""Process image with Qwen2VL model"""
|
168 |
+
try:
|
169 |
+
# 1. 将Qwen2VL相关模型移到GPU
|
170 |
+
self.models['qwen2vl'] = self.move_to_device(self.models['qwen2vl'], self.device)
|
171 |
+
self.models['connector'] = self.move_to_device(self.models['connector'], self.device)
|
172 |
+
|
173 |
+
message = [
|
174 |
+
{
|
175 |
+
"role": "user",
|
176 |
+
"content": [
|
177 |
+
{"type": "image", "image": image},
|
178 |
+
{"type": "text", "text": "Describe this image."},
|
179 |
+
]
|
180 |
+
}
|
181 |
+
]
|
182 |
+
text = self.qwen2vl_processor.apply_chat_template(
|
183 |
+
message,
|
184 |
+
tokenize=False,
|
185 |
+
add_generation_prompt=True
|
186 |
+
)
|
187 |
+
|
188 |
+
with torch.no_grad():
|
189 |
+
inputs = self.qwen2vl_processor(
|
190 |
+
text=[text],
|
191 |
+
images=[image],
|
192 |
+
padding=True,
|
193 |
+
return_tensors="pt"
|
194 |
+
).to(self.device)
|
195 |
+
|
196 |
+
output_hidden_state, image_token_mask, image_grid_thw = self.models['qwen2vl'](**inputs)
|
197 |
+
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
|
198 |
+
image_hidden_state = self.models['connector'](image_hidden_state)
|
199 |
+
|
200 |
+
# 保存结果到CPU
|
201 |
+
result = (image_hidden_state.cpu(), image_grid_thw)
|
202 |
+
|
203 |
+
# 2. 将Qwen2VL相关模型移回CPU以释放显存
|
204 |
+
self.models['qwen2vl'] = self.move_to_device(self.models['qwen2vl'], 'cpu')
|
205 |
+
self.models['connector'] = self.move_to_device(self.models['connector'], 'cpu')
|
206 |
+
torch.cuda.empty_cache()
|
207 |
+
|
208 |
+
return result
|
209 |
+
|
210 |
+
except Exception as e:
|
211 |
+
logger.error(f"Error in process_image: {str(e)}")
|
212 |
+
raise
|
213 |
|
214 |
def resize_image(self, img, max_pixels=1050000):
|
215 |
if not isinstance(img, Image.Image):
|
|
|
227 |
img = img.resize((new_width, new_height), Image.LANCZOS)
|
228 |
|
229 |
return img
|
230 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
def compute_t5_text_embeddings(self, prompt):
|
232 |
"""Compute T5 embeddings for text prompt"""
|
233 |
if prompt == "":
|
|
|
265 |
|
266 |
return pooled_prompt_embeds
|
267 |
|
268 |
+
def generate(self, input_image, prompt="", guidance_scale=3.5,
|
269 |
+
num_inference_steps=28, num_images=2, seed=None, aspect_ratio="1:1"):
|
270 |
try:
|
271 |
+
logger.info(f"Starting generation with prompt: {prompt}")
|
272 |
|
273 |
if input_image is None:
|
274 |
raise ValueError("No input image provided")
|
275 |
|
276 |
if seed is not None:
|
277 |
torch.manual_seed(seed)
|
278 |
+
|
279 |
+
# 1. 使用Qwen2VL处理图像
|
280 |
+
qwen2_hidden_state, image_grid_thw = self.process_image(input_image)
|
|
|
281 |
|
282 |
+
# 2. 计算文本嵌入
|
283 |
+
pooled_prompt_embeds = self.compute_text_embeddings("")
|
284 |
+
t5_prompt_embeds = self.compute_t5_text_embeddings(prompt)
|
|
|
|
|
285 |
|
286 |
+
# 3. 将Transformer和VAE移到GPU
|
287 |
+
self.models['transformer'] = self.move_to_device(self.models['transformer'], self.device)
|
288 |
+
self.models['vae'] = self.move_to_device(self.models['vae'], self.device)
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
+
# 更新pipeline中的模型
|
291 |
+
self.pipeline.transformer = self.models['transformer']
|
292 |
+
self.pipeline.vae = self.models['vae']
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
|
294 |
+
# 获取维度
|
295 |
+
width, height = ASPECT_RATIOS[aspect_ratio]
|
296 |
+
|
297 |
+
# 4. 生成图像
|
298 |
try:
|
299 |
output_images = self.pipeline(
|
300 |
+
prompt_embeds=qwen2_hidden_state.to(self.device).repeat(num_images, 1, 1),
|
301 |
pooled_prompt_embeds=pooled_prompt_embeds,
|
302 |
t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
|
303 |
num_inference_steps=num_inference_steps,
|
|
|
306 |
width=width,
|
307 |
).images
|
308 |
|
309 |
+
# 5. 将Transformer和VAE移回CPU
|
310 |
+
self.models['transformer'] = self.move_to_device(self.models['transformer'], 'cpu')
|
311 |
+
self.models['vae'] = self.move_to_device(self.models['vae'], 'cpu')
|
312 |
+
torch.cuda.empty_cache()
|
313 |
+
|
314 |
return output_images
|
315 |
+
|
316 |
except Exception as e:
|
317 |
raise RuntimeError(f"Error generating images: {str(e)}")
|
318 |
+
|
319 |
except Exception as e:
|
320 |
logger.error(f"Error during generation: {str(e)}")
|
321 |
raise gr.Error(f"Generation failed: {str(e)}")
|