Spaces:
Sleeping
Sleeping
import torch | |
from datasets import load_dataset | |
torch.cuda.is_available() | |
print("executed successfully") | |
dataset_name = "timdettmers/openassistant-guanaco" | |
dataset = load_dataset(dataset_name, split="train") | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
# quantizition configuration | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.float16, | |
) | |
# download model | |
model_name = "TinyPixel/Llama-2-7B-bf16-sharded" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=bnb_config, | |
trust_remote_code=True | |
) | |
model.config.use_cache = False | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
tokenizer.pad_token = tokenizer.eos_token | |
text = "What is a large language model?" | |
device = "cuda:0" | |
inputs = tokenizer(text, return_tensors="pt").to(device) | |
outputs = model.generate(**inputs, max_new_tokens=50) | |
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |