Spaces:
Sleeping
Sleeping
Commit
·
60870dc
1
Parent(s):
55b5608
removed peft
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
from peft import PeftModel, PeftConfig
|
2 |
import torch
|
3 |
from datasets import load_dataset
|
4 |
|
@@ -8,28 +7,32 @@ print("executed successfully")
|
|
8 |
dataset_name = "timdettmers/openassistant-guanaco"
|
9 |
dataset = load_dataset(dataset_name, split="train")
|
10 |
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
print(ld_library_path)
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
-
# Walk through the directory and its subdirectories
|
27 |
-
for root, dirs, files in os.walk(search_directory):
|
28 |
-
for file in files:
|
29 |
-
if file.startswith('libcuda.so.'):
|
30 |
-
matching_files.append(os.path.join(root, file))
|
31 |
-
|
32 |
-
# Print the paths of matching files
|
33 |
-
for file in matching_files:
|
34 |
-
print(file)
|
35 |
|
|
|
|
|
1 |
import torch
|
2 |
from datasets import load_dataset
|
3 |
|
|
|
7 |
dataset_name = "timdettmers/openassistant-guanaco"
|
8 |
dataset = load_dataset(dataset_name, split="train")
|
9 |
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
11 |
|
12 |
+
# quantizition configuration
|
13 |
+
bnb_config = BitsAndBytesConfig(
|
14 |
+
load_in_4bit=True,
|
15 |
+
bnb_4bit_quant_type="nf4",
|
16 |
+
bnb_4bit_compute_dtype=torch.float16,
|
17 |
+
)
|
18 |
|
19 |
+
# download model
|
|
|
20 |
|
21 |
+
model_name = "TinyPixel/Llama-2-7B-bf16-sharded"
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
model_name,
|
24 |
+
quantization_config=bnb_config,
|
25 |
+
trust_remote_code=True
|
26 |
+
)
|
27 |
+
model.config.use_cache = False
|
28 |
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
30 |
+
tokenizer.pad_token = tokenizer.eos_token
|
31 |
|
32 |
+
text = "What is a large language model?"
|
33 |
+
device = "cuda:0"
|
34 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
35 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
36 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|