Alibrown's picture
Update app.py
4e69a41 verified
# Copyright Volkan Sah! Do not steal code if its for free! Respect creators!
# You can use it for free a star or follow will be greate!
import gradio as gr
import numpy as np
import random
import os
import spaces
import time
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import login
login(os.environ.get("HF_TOKEN"))
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
pipe = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights('enhanceaiteam/Flux-uncensored')
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def dev_pipeline_test(prompt, width, height, steps):
"""Simulates pipeline tests without actual image generation"""
time.sleep(0.1) # Simulate processing
estimated_memory = (width * height * 3 * 4) / (1024 * 1024) # MB
return {
'success': True,
'memory_required': f"{estimated_memory:.2f}MB",
'compute_units': steps * (width * height) / 1024**2,
'would_generate': True
}
@spaces.GPU
def infer(
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
dev_mode,
progress=gr.Progress(track_tqdm=True),
):
if dev_mode:
result = dev_pipeline_test(prompt, width, height, num_inference_steps)
# Create a black test image with debug info
debug_image = np.zeros((height, width, 3), dtype=np.uint8)
return debug_image, seed, f"DEV MODE: {result}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed, "Production generation completed"
examples = [
"Tiger in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a pink horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""# [FLUX.1-dev](https://blackforestlabs.ai/)
Generate any type of image with Flux-Dev (Lora: Flux-uncensored). Note: This script works well, but please use min. ZeroGPU
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
status_text = gr.Text(label="Status", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
dev_mode = gr.Checkbox(label="Developer Mode (No actual generation)", value=False)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=2,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
dev_mode,
],
outputs=[result, seed, status_text],
)
if __name__ == "__main__":
demo.launch()