Spaces:
Runtime error
Runtime error
# Copyright Volkan Sah! Do not steal code if its for free! Respect creators! | |
# You can use it for free a star or follow will be greate! | |
import gradio as gr | |
import numpy as np | |
import random | |
import os | |
import spaces | |
import time | |
from diffusers import AutoPipelineForText2Image | |
import torch | |
from huggingface_hub import login | |
login(os.environ.get("HF_TOKEN")) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
pipe = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
pipe.load_lora_weights('enhanceaiteam/Flux-uncensored') | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def dev_pipeline_test(prompt, width, height, steps): | |
"""Simulates pipeline tests without actual image generation""" | |
time.sleep(0.1) # Simulate processing | |
estimated_memory = (width * height * 3 * 4) / (1024 * 1024) # MB | |
return { | |
'success': True, | |
'memory_required': f"{estimated_memory:.2f}MB", | |
'compute_units': steps * (width * height) / 1024**2, | |
'would_generate': True | |
} | |
def infer( | |
prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
dev_mode, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if dev_mode: | |
result = dev_pipeline_test(prompt, width, height, num_inference_steps) | |
# Create a black test image with debug info | |
debug_image = np.zeros((height, width, 3), dtype=np.uint8) | |
return debug_image, seed, f"DEV MODE: {result}" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image, seed, "Production generation completed" | |
examples = [ | |
"Tiger in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a pink horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("""# [FLUX.1-dev](https://blackforestlabs.ai/) | |
Generate any type of image with Flux-Dev (Lora: Flux-uncensored). Note: This script works well, but please use min. ZeroGPU | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
status_text = gr.Text(label="Status", show_label=True) | |
with gr.Accordion("Advanced Settings", open=False): | |
dev_mode = gr.Checkbox(label="Developer Mode (No actual generation)", value=False) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=2, | |
) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
dev_mode, | |
], | |
outputs=[result, seed, status_text], | |
) | |
if __name__ == "__main__": | |
demo.launch() |