Spaces:
Runtime error
Runtime error
File size: 4,904 Bytes
103a9de 4e69a41 103a9de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# Copyright Volkan Sah! Do not steal code if its for free! Respect creators!
# You can use it for free a star or follow will be greate!
import gradio as gr
import numpy as np
import random
import os
import spaces
import time
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import login
login(os.environ.get("HF_TOKEN"))
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
pipe = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights('enhanceaiteam/Flux-uncensored')
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
def dev_pipeline_test(prompt, width, height, steps):
"""Simulates pipeline tests without actual image generation"""
time.sleep(0.1) # Simulate processing
estimated_memory = (width * height * 3 * 4) / (1024 * 1024) # MB
return {
'success': True,
'memory_required': f"{estimated_memory:.2f}MB",
'compute_units': steps * (width * height) / 1024**2,
'would_generate': True
}
@spaces.GPU
def infer(
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
dev_mode,
progress=gr.Progress(track_tqdm=True),
):
if dev_mode:
result = dev_pipeline_test(prompt, width, height, num_inference_steps)
# Create a black test image with debug info
debug_image = np.zeros((height, width, 3), dtype=np.uint8)
return debug_image, seed, f"DEV MODE: {result}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed, "Production generation completed"
examples = [
"Tiger in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a pink horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""# [FLUX.1-dev](https://blackforestlabs.ai/)
Generate any type of image with Flux-Dev (Lora: Flux-uncensored). Note: This script works well, but please use min. ZeroGPU
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
status_text = gr.Text(label="Status", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
dev_mode = gr.Checkbox(label="Developer Mode (No actual generation)", value=False)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=2,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
dev_mode,
],
outputs=[result, seed, status_text],
)
if __name__ == "__main__":
demo.launch() |