See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: microsoft/Phi-3-mini-4k-instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 11bb3328a39885eb_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/11bb3328a39885eb_train_data.json
type:
field_instruction: query
field_output: atom
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 20
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56t0/385d0209-5a48-4c55-afeb-fa0021266d80
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/11bb3328a39885eb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 20
saves_per_epoch: 0
seed: 754886094
sequence_len: 512
shuffle: true
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: 38ik
wandb_runid: null
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
385d0209-5a48-4c55-afeb-fa0021266d80
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6789
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 754886094
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 16
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0075 | 1 | 1.6674 |
No log | 0.1509 | 20 | 0.9842 |
No log | 0.3019 | 40 | 0.7868 |
No log | 0.4528 | 60 | 0.7475 |
No log | 0.6038 | 80 | 0.7317 |
1.7686 | 0.7547 | 100 | 0.7231 |
1.7686 | 0.9057 | 120 | 0.7148 |
1.7686 | 1.0566 | 140 | 0.7108 |
1.7686 | 1.2075 | 160 | 0.7068 |
1.7686 | 1.3585 | 180 | 0.7043 |
1.3649 | 1.5094 | 200 | 0.7011 |
1.3649 | 1.6604 | 220 | 0.6980 |
1.3649 | 1.8113 | 240 | 0.6959 |
1.3649 | 1.9623 | 260 | 0.6925 |
1.3649 | 2.1132 | 280 | 0.6920 |
1.3269 | 2.2642 | 300 | 0.6920 |
1.3269 | 2.4151 | 320 | 0.6893 |
1.3269 | 2.5660 | 340 | 0.6882 |
1.3269 | 2.7170 | 360 | 0.6864 |
1.3269 | 2.8679 | 380 | 0.6846 |
1.2806 | 3.0189 | 400 | 0.6831 |
1.2806 | 3.1698 | 420 | 0.6832 |
1.2806 | 3.3208 | 440 | 0.6837 |
1.2806 | 3.4717 | 460 | 0.6820 |
1.2806 | 3.6226 | 480 | 0.6815 |
1.2517 | 3.7736 | 500 | 0.6806 |
1.2517 | 3.9245 | 520 | 0.6802 |
1.2517 | 4.0755 | 540 | 0.6800 |
1.2517 | 4.2264 | 560 | 0.6797 |
1.2517 | 4.3774 | 580 | 0.6792 |
1.2416 | 4.5283 | 600 | 0.6792 |
1.2416 | 4.6792 | 620 | 0.6789 |
1.2416 | 4.8302 | 640 | 0.6789 |
1.2416 | 4.9811 | 660 | 0.6789 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for sn56t0/385d0209-5a48-4c55-afeb-fa0021266d80
Base model
microsoft/Phi-3-mini-4k-instruct