Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: microsoft/Phi-3-mini-4k-instruct
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 11bb3328a39885eb_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/11bb3328a39885eb_train_data.json
  type:
    field_instruction: query
    field_output: atom
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 20
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56t0/385d0209-5a48-4c55-afeb-fa0021266d80
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/11bb3328a39885eb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 20
saves_per_epoch: 0
seed: 754886094
sequence_len: 512
shuffle: true
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: 38ik
wandb_runid: null
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

385d0209-5a48-4c55-afeb-fa0021266d80

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6789

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 754886094
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • total_eval_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 16
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
No log 0.0075 1 1.6674
No log 0.1509 20 0.9842
No log 0.3019 40 0.7868
No log 0.4528 60 0.7475
No log 0.6038 80 0.7317
1.7686 0.7547 100 0.7231
1.7686 0.9057 120 0.7148
1.7686 1.0566 140 0.7108
1.7686 1.2075 160 0.7068
1.7686 1.3585 180 0.7043
1.3649 1.5094 200 0.7011
1.3649 1.6604 220 0.6980
1.3649 1.8113 240 0.6959
1.3649 1.9623 260 0.6925
1.3649 2.1132 280 0.6920
1.3269 2.2642 300 0.6920
1.3269 2.4151 320 0.6893
1.3269 2.5660 340 0.6882
1.3269 2.7170 360 0.6864
1.3269 2.8679 380 0.6846
1.2806 3.0189 400 0.6831
1.2806 3.1698 420 0.6832
1.2806 3.3208 440 0.6837
1.2806 3.4717 460 0.6820
1.2806 3.6226 480 0.6815
1.2517 3.7736 500 0.6806
1.2517 3.9245 520 0.6802
1.2517 4.0755 540 0.6800
1.2517 4.2264 560 0.6797
1.2517 4.3774 580 0.6792
1.2416 4.5283 600 0.6792
1.2416 4.6792 620 0.6789
1.2416 4.8302 640 0.6789
1.2416 4.9811 660 0.6789

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
7
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for sn56t0/385d0209-5a48-4c55-afeb-fa0021266d80

Adapter
(668)
this model