See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: princeton-nlp/gemma-2-9b-it-SimPO
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 6ab08261e3aa0746_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6ab08261e3aa0746_train_data.json
type:
field_instruction: question_en
field_output: answer_en
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 5
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: sn56m4/b3d8c535-7b49-49c7-ae32-b045bf9447dd
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_steps: 518
micro_batch_size: 4
mlflow_experiment_name: /tmp/6ab08261e3aa0746_train_data.json
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: sn56m4/b3d8c535
wandb_project: god
wandb_run: pecm
wandb_runid: sn56m4/b3d8c535
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
93847a94-7e15-4925-b4d7-e91ea53c9d40
This model is a fine-tuned version of princeton-nlp/gemma-2-9b-it-SimPO on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1941
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 518
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6093 | 0.0003 | 1 | 1.5719 |
0.2261 | 0.0169 | 50 | 0.2417 |
0.2297 | 0.0337 | 100 | 0.2247 |
0.2174 | 0.0506 | 150 | 0.2165 |
0.2144 | 0.0674 | 200 | 0.2113 |
0.221 | 0.0843 | 250 | 0.2062 |
0.1816 | 0.1011 | 300 | 0.2019 |
0.1847 | 0.1180 | 350 | 0.1989 |
0.1914 | 0.1348 | 400 | 0.1960 |
0.1985 | 0.1517 | 450 | 0.1945 |
0.1733 | 0.1686 | 500 | 0.1941 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Model tree for sn56m4/b3d8c535-7b49-49c7-ae32-b045bf9447dd
Base model
google/gemma-2-9b
Finetuned
google/gemma-2-9b-it
Finetuned
princeton-nlp/gemma-2-9b-it-SimPO