See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: tiiuae/falcon-7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 3e67dcd9c278ad31_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/3e67dcd9c278ad31_train_data.json
type:
field_instruction: Source
field_output: Sentence
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56b2/c595e835-8e56-4c65-ac0b-fcd1e4c3d08b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/3e67dcd9c278ad31_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: pmq0
wandb_runid: null
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
c595e835-8e56-4c65-ac0b-fcd1e4c3d08b
This model is a fine-tuned version of tiiuae/falcon-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9978
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0037 | 1 | 5.8494 |
25.5609 | 0.1560 | 42 | 3.0784 |
23.2225 | 0.3120 | 84 | 2.8247 |
21.461 | 0.4680 | 126 | 2.6478 |
20.3326 | 0.6240 | 168 | 2.5137 |
18.8213 | 0.7799 | 210 | 2.3929 |
19.1582 | 0.9359 | 252 | 2.2803 |
14.7959 | 1.0919 | 294 | 2.2048 |
15.0965 | 1.2479 | 336 | 2.1123 |
14.1017 | 1.4039 | 378 | 2.0575 |
13.9084 | 1.5599 | 420 | 2.0130 |
13.3749 | 1.7159 | 462 | 1.9978 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Model tree for sn56b2/c595e835-8e56-4c65-ac0b-fcd1e4c3d08b
Base model
tiiuae/falcon-7b