Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Eurdem/Defne_llama3_2x8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d8a7a0d4af9626da_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d8a7a0d4af9626da_train_data.json
  type:
    field_input: operator
    field_instruction: prompt
    field_output: prompt_label
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56a1/634c0fbd-5d62-4560-86d6-2be48a10e55b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/d8a7a0d4af9626da_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: 634c0fbd-5d62-4560-86d6-2be48a10e55b
wandb_project: god
wandb_run: eevg
wandb_runid: 634c0fbd-5d62-4560-86d6-2be48a10e55b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

634c0fbd-5d62-4560-86d6-2be48a10e55b

This model is a fine-tuned version of Eurdem/Defne_llama3_2x8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0675

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0018 1 8.2631
4.507 0.0182 10 0.8220
0.129 0.0364 20 0.1394
0.1328 0.0546 30 0.0837
0.0719 0.0728 40 0.0694
0.0759 0.0910 50 0.0675

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sn56a1/634c0fbd-5d62-4560-86d6-2be48a10e55b

Adapter
(52)
this model