peft-lora-starcoderplus-chat-asst-A100-40GB-colab
This model is a fine-tuned version of bigcode/starcoderplus on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9217
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.982 | 0.3 | 203 | 0.9101 |
0.9379 | 1.3 | 406 | 0.9078 |
0.8899 | 2.3 | 609 | 0.9217 |
Framework versions
- PEFT 0.5.0.dev0
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.0
- Tokenizers 0.13.3
- Downloads last month
- 8
Model tree for smangrul/peft-lora-starcoderplus-chat-asst-A100-40GB-colab
Base model
bigcode/starcoderplus