slickdata's picture
update model card README.md
24e64dc
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
model-index:
  - name: finetuned-Sentiment-classfication-ROBERTA-model
    results: []

finetuned-Sentiment-classfication-ROBERTA-model

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2222
  • Rmse: 0.2936

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Rmse
0.6684 2.72 500 0.3931 0.4892
0.1963 5.43 1000 0.2222 0.2936
0.0755 8.15 1500 0.2479 0.2757
0.0413 10.86 2000 0.3233 0.2794
0.0213 13.58 2500 0.3590 0.2689

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3