llm3br256-150steps

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the reliance-oneshot-train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0129

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 150

Training results

Training Loss Epoch Step Validation Loss
0.0468 0.1786 5 0.0408
0.0274 0.3571 10 0.0312
0.0222 0.5357 15 0.0246
0.0253 0.7143 20 0.0221
0.0197 0.8929 25 0.0204
0.0169 1.0714 30 0.0190
0.0152 1.25 35 0.0177
0.0169 1.4286 40 0.0168
0.0123 1.6071 45 0.0164
0.0139 1.7857 50 0.0159
0.0105 1.9643 55 0.0153
0.0123 2.1429 60 0.0151
0.0105 2.3214 65 0.0149
0.0103 2.5 70 0.0144
0.0097 2.6786 75 0.0139
0.0113 2.8571 80 0.0137
0.0075 3.0357 85 0.0137
0.0084 3.2143 90 0.0137
0.0074 3.3929 95 0.0136
0.0079 3.5714 100 0.0133
0.0078 3.75 105 0.0132
0.0084 3.9286 110 0.0130
0.0081 4.1071 115 0.0130
0.007 4.2857 120 0.0131
0.0068 4.4643 125 0.0131
0.0069 4.6429 130 0.0131
0.0066 4.8214 135 0.0130
0.0057 5.0 140 0.0129
0.0057 5.1786 145 0.0130
0.0057 5.3571 150 0.0129

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.1
  • Pytorch 2.4.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
28
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sizhkhy/reliance

Adapter
(93)
this model