llm3br256

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the ftni-oneshot-train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0169

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss
0.0269 1.5385 5 0.0240
0.0264 3.0769 10 0.0179
0.0123 4.6154 15 0.0169

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.1
  • Pytorch 2.4.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
12
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sizhkhy/ftni-sample

Adapter
(93)
this model