Edit model card

default

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1946
  • Accuracy: 0.9395
  • F1: 0.9398
  • Recall: 0.9395
  • Precision: 0.9413
  • Combined Score: 0.9400

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 128
  • eval_batch_size: 512
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision Combined Score
1.0664 0.06 20 1.0651 0.4448 0.2739 0.4448 0.1978 0.3403
1.0423 0.12 40 1.0188 0.5034 0.4138 0.5034 0.4328 0.4633
1.0137 0.18 60 0.9871 0.5279 0.4596 0.5279 0.4219 0.4843
1.0027 0.24 80 0.9889 0.5308 0.4653 0.5308 0.4196 0.4866
0.9914 0.3 100 0.9763 0.5308 0.4666 0.5308 0.4176 0.4864
0.9826 0.36 120 0.9713 0.5388 0.4711 0.5388 0.4292 0.4945
0.9788 0.42 140 0.9766 0.5313 0.4674 0.5313 0.4186 0.4871
0.984 0.48 160 0.9590 0.5398 0.4751 0.5398 0.4243 0.4948
0.9694 0.54 180 0.9535 0.5423 0.4772 0.5423 0.4269 0.4972
0.9676 0.6 200 0.9274 0.5672 0.4991 0.5672 0.4467 0.5200
0.9753 0.66 220 0.9126 0.5736 0.5026 0.5736 0.4616 0.5279
0.9557 0.72 240 0.9053 0.5760 0.5069 0.5760 0.4532 0.5280
0.9508 0.78 260 0.9179 0.5767 0.5018 0.5767 0.4811 0.5341
0.9355 0.84 280 0.8937 0.5892 0.5183 0.5892 0.4662 0.5407
0.9 0.9 300 0.8469 0.6130 0.5579 0.6130 0.5855 0.5924
0.993 0.96 320 0.8615 0.6047 0.5352 0.6047 0.6175 0.5905
0.8527 1.02 340 0.7896 0.6439 0.6212 0.6439 0.6240 0.6333
0.966 1.08 360 1.0124 0.5316 0.4944 0.5316 0.6428 0.5501
0.8441 1.14 380 0.7911 0.6489 0.6371 0.6489 0.6584 0.6483
0.8226 1.2 400 0.7472 0.6700 0.6459 0.6700 0.6625 0.6621
0.7948 1.26 420 0.7664 0.6581 0.6095 0.6581 0.6796 0.6513
0.7428 1.32 440 0.6994 0.6992 0.6533 0.6992 0.7104 0.6905
0.7109 1.38 460 0.6511 0.7284 0.6890 0.7284 0.7345 0.7201
0.6882 1.44 480 0.5988 0.7577 0.7336 0.7577 0.7570 0.7515
0.7296 1.5 500 0.5993 0.7564 0.7669 0.7564 0.7902 0.7675
0.5677 1.57 520 0.5068 0.8126 0.7942 0.8126 0.8225 0.8105
0.5096 1.63 540 0.4273 0.8520 0.8449 0.8520 0.8511 0.8500
0.4452 1.69 560 0.3796 0.8722 0.8699 0.8722 0.8703 0.8711
0.3836 1.75 580 0.3855 0.8757 0.8758 0.8757 0.8778 0.8762
0.3783 1.81 600 0.3586 0.8894 0.8883 0.8894 0.8885 0.8889
0.3496 1.87 620 0.3210 0.8972 0.8973 0.8972 0.8974 0.8973
0.3585 1.93 640 0.3006 0.9035 0.9031 0.9035 0.9033 0.9034
0.345 1.99 660 0.3054 0.9014 0.9025 0.9014 0.9052 0.9026
0.3327 2.05 680 0.3174 0.8913 0.8866 0.8913 0.8955 0.8912
0.2962 2.11 700 0.2770 0.9122 0.9125 0.9122 0.9130 0.9125
0.3032 2.17 720 0.2979 0.9062 0.9055 0.9062 0.9093 0.9068
0.27 2.23 740 0.2973 0.8998 0.8971 0.8998 0.9045 0.9003
0.2912 2.29 760 0.2467 0.9222 0.9221 0.9222 0.9223 0.9222
0.2412 2.35 780 0.2761 0.9113 0.9128 0.9113 0.9173 0.9132
0.2746 2.41 800 0.2410 0.9260 0.9257 0.9260 0.9260 0.9259
0.2637 2.47 820 0.2447 0.9221 0.9213 0.9221 0.9228 0.9221
0.2605 2.53 840 0.2475 0.9237 0.9232 0.9237 0.9254 0.9240
0.2517 2.59 860 0.2590 0.9265 0.9259 0.9265 0.9272 0.9265
0.2453 2.65 880 0.2248 0.9300 0.9305 0.9300 0.9315 0.9305
0.2247 2.71 900 0.2285 0.9273 0.9281 0.9273 0.9299 0.9282
0.2402 2.77 920 0.2304 0.9306 0.9310 0.9306 0.9317 0.9310
0.2033 2.83 940 0.2228 0.9319 0.9316 0.9319 0.9325 0.9320
0.2315 2.89 960 0.2275 0.9271 0.9281 0.9271 0.9311 0.9283
0.2231 2.95 980 0.2115 0.9343 0.9345 0.9343 0.9350 0.9345
0.2061 3.01 1000 0.2156 0.9355 0.9356 0.9355 0.9361 0.9357
0.238 3.07 1020 0.2359 0.9252 0.9262 0.9252 0.9294 0.9265
0.1959 3.13 1040 0.2052 0.9343 0.9343 0.9343 0.9351 0.9345
0.2013 3.19 1060 0.2114 0.9337 0.9336 0.9337 0.9349 0.9340
0.2055 3.25 1080 0.1985 0.9354 0.9354 0.9354 0.9361 0.9356
0.1851 3.31 1100 0.2098 0.9340 0.9338 0.9340 0.9352 0.9342
0.2091 3.37 1120 0.2002 0.9350 0.9347 0.9350 0.9355 0.9350
0.1933 3.43 1140 0.2045 0.9367 0.9371 0.9367 0.9377 0.9370
0.2011 3.49 1160 0.2072 0.9350 0.9345 0.9350 0.9353 0.9349
0.2085 3.55 1180 0.2124 0.9327 0.9337 0.9327 0.9362 0.9338
0.1991 3.61 1200 0.1880 0.9396 0.9398 0.9396 0.9406 0.9399
0.1972 3.67 1220 0.2123 0.9347 0.9344 0.9347 0.9351 0.9347
0.1905 3.73 1240 0.2056 0.9351 0.9352 0.9351 0.9368 0.9355
0.1974 3.79 1260 0.2432 0.9285 0.9280 0.9285 0.9308 0.9289
0.1831 3.85 1280 0.1881 0.9392 0.9390 0.9392 0.9402 0.9394
0.1883 3.91 1300 0.1948 0.9413 0.9415 0.9413 0.9423 0.9416
0.2023 3.97 1320 0.2041 0.9335 0.9343 0.9335 0.9369 0.9346
0.1694 4.03 1340 0.2007 0.9360 0.9360 0.9360 0.9372 0.9363
0.1727 4.09 1360 0.1990 0.9411 0.9414 0.9411 0.9422 0.9414
0.1666 4.15 1380 0.1952 0.9397 0.9399 0.9397 0.9403 0.9399
0.2011 4.21 1400 0.1953 0.9384 0.9388 0.9384 0.9401 0.9389
0.1798 4.27 1420 0.2032 0.9325 0.9318 0.9325 0.9345 0.9328
0.1808 4.33 1440 0.2085 0.9308 0.9319 0.9308 0.9357 0.9323
0.1552 4.39 1460 0.2010 0.9371 0.9377 0.9371 0.9391 0.9377
0.1608 4.45 1480 0.2090 0.9342 0.9349 0.9342 0.9372 0.9351
0.1683 4.51 1500 0.2005 0.9374 0.9371 0.9374 0.9384 0.9376
0.1484 4.57 1520 0.1893 0.9380 0.9386 0.9380 0.9402 0.9387
0.1561 4.64 1540 0.1922 0.9401 0.9405 0.9401 0.9417 0.9406
0.1753 4.7 1560 0.1905 0.9416 0.9418 0.9416 0.9428 0.9419
0.1668 4.76 1580 0.1767 0.9420 0.9419 0.9420 0.9426 0.9421
0.1651 4.82 1600 0.1772 0.9429 0.9429 0.9429 0.9431 0.9429
0.1601 4.88 1620 0.1778 0.9433 0.9434 0.9433 0.9436 0.9434
0.1686 4.94 1640 0.1943 0.9414 0.9415 0.9414 0.9423 0.9416
0.1342 5.0 1660 0.1946 0.9395 0.9398 0.9395 0.9413 0.9400

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
24
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sheepy928/default

Finetuned
(1285)
this model
Finetunes
1 model