layoutlmv2-base-uncased_finetuned_docvqa

This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.1691

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
5.2266 0.22 50 4.7202
4.4028 0.44 100 4.1366
4.0483 0.66 150 3.8471
3.7553 0.88 200 3.5072
3.4046 1.11 250 3.5053
3.1543 1.33 300 3.1483
3.0577 1.55 350 3.0745
2.8076 1.77 400 2.8592
2.456 1.99 450 2.7019
1.9787 2.21 500 2.7553
1.9308 2.43 550 2.3374
1.7637 2.65 600 2.2109
1.7719 2.88 650 2.9137
1.6661 3.1 700 2.7946
1.3154 3.32 750 2.5750
1.3015 3.54 800 2.4883
1.2136 3.76 850 2.1466
1.253 3.98 900 2.2343
0.96 4.2 950 2.6481
0.9083 4.42 1000 2.2891
0.9441 4.65 1050 2.8459
0.9041 4.87 1100 3.0106
0.8727 5.09 1150 2.7765
0.6496 5.31 1200 3.0633
0.7388 5.53 1250 2.7464
0.5012 5.75 1300 3.3843
0.6762 5.97 1350 3.6035
0.4907 6.19 1400 3.4269
0.5893 6.42 1450 3.2352
0.4987 6.64 1500 3.2802
0.3867 6.86 1550 3.8191
0.6091 7.08 1600 3.4476
0.4088 7.3 1650 3.5099
0.4135 7.52 1700 3.4519
0.3859 7.74 1750 3.4147
0.335 7.96 1800 3.8082
0.2068 8.19 1850 4.3927
0.3149 8.41 1900 3.7065
0.2526 8.63 1950 3.6056
0.451 8.85 2000 3.7065
0.3792 9.07 2050 3.8738
0.2299 9.29 2100 3.8282
0.3064 9.51 2150 3.6586
0.26 9.73 2200 3.9155
0.3218 9.96 2250 3.5863
0.2826 10.18 2300 3.5095
0.149 10.4 2350 3.4537
0.1213 10.62 2400 3.8778
0.2157 10.84 2450 3.8106
0.2149 11.06 2500 4.2672
0.1212 11.28 2550 4.2534
0.1664 11.5 2600 4.3033
0.1487 11.73 2650 3.9483
0.1088 11.95 2700 3.9682
0.0791 12.17 2750 4.2143
0.0734 12.39 2800 4.2175
0.128 12.61 2850 4.2613
0.1851 12.83 2900 3.9094
0.1215 13.05 2950 4.2045
0.0438 13.27 3000 4.5802
0.0107 13.5 3050 4.7988
0.0606 13.72 3100 5.0228
0.0819 13.94 3150 4.9309
0.1375 14.16 3200 4.8995
0.0729 14.38 3250 4.7900
0.0832 14.6 3300 4.6417
0.0687 14.82 3350 4.8781
0.0516 15.04 3400 4.9231
0.056 15.27 3450 5.1059
0.0672 15.49 3500 5.0563
0.1036 15.71 3550 4.5889
0.1551 15.93 3600 4.4488
0.0509 16.15 3650 4.8964
0.0505 16.37 3700 4.9259
0.0295 16.59 3750 4.8617
0.0766 16.81 3800 4.7973
0.0103 17.04 3850 4.9249
0.0148 17.26 3900 4.9319
0.0105 17.48 3950 5.1000
0.0341 17.7 4000 4.9627
0.0547 17.92 4050 5.0149
0.0106 18.14 4100 5.0924
0.0045 18.36 4150 5.1550
0.0072 18.58 4200 5.1620
0.0428 18.81 4250 5.1546
0.0443 19.03 4300 5.1506
0.0244 19.25 4350 5.1720
0.0096 19.47 4400 5.1640
0.0265 19.69 4450 5.1647
0.0057 19.91 4500 5.1691

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
200M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for shashin/layoutlmv2-base-uncased_finetuned_docvqa

Finetuned
(67)
this model