metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget: []
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: BAAI/bge-small-en-v1.5
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model has been fine-tuned for the classification of daily notes. It is a multiclass classifier capable of categorizing text inputs into six distinct classes:
- Cita (Appointment)
- Comprar (Shopping)
- Trabajo (Work)
- Recordatorio (Reminder)
- Estudios (Studies)
- Hogar (Home)
Note: While the model has been fine-tuned specifically for the Spanish language, it also performs well with notes written in English.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 6 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("sergifusterdura/dailynoteclassifier-setfit-v1.5-16-shot")
# Run inference
preds = model("Tengo que ir a comprar fruta esta tarde.")
Training Details
Framework Versions
- Python: 3.11.5
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cpu
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}