SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seongil-dn/gte-base-250k-answerableHN")
# Run inference
sentences = [
'파올로 말디니는 어떤 선수인가요?',
'파올로 체사레 말디니 (, 1968년 6월 26일, 이탈리아 밀라노 ~ )는 이탈리아의 은퇴한 축구 선수로, 포지션은 왼쪽 풀백과 센터백이었다. 그는 밀란의 전설적인 수비수 였을 뿐 아니라 역대 최고 수비수로도 불릴 만큼 대단한 선수였다. 현재 밀란의 스포츠 전략 & 개발 디렉터로 활동하고 있다.',
'체사레 말디니는 1954년부터 1966년까지 AC 밀란에서 뛰었고, 아들 파올로 말디니는 1985년부터 2009년까지 AC 밀란에서 뛰었으며, 손자 크리스티안 말디니가 2005년 10월 18일 AC 밀란 유스팀에 입단해 3부자가 모두 AC 밀란에서 활약하게 되었다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 816,532 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 9 tokens
- mean: 17.22 tokens
- max: 32 tokens
- min: 46 tokens
- mean: 144.47 tokens
- max: 621 tokens
- min: 46 tokens
- mean: 169.92 tokens
- max: 1024 tokens
- Samples:
anchor positive negative 별의 나이는 어떻게 측정하는가?
별의 나이는 토륨과 다른 성분들에 의해 만들어진 스펙트럼선들의 상대적인 힘을 측정하기 위해 초거대망원경의 자외선 분광기를 사용하여 추측한다. 선의 힘은 여러 가지 다양한 동위원소를 만들어내는데, 그것들로부터 핵우주 연대학을 사용하여 별의 나이를 짐작하는 것이다.
아들이 아버지보다 나이가 많을 수 없는 것처럼, 우주 안의 천체는 당연히 우주보다는 젊어야 하기 때문에, 여러 종류의 천체를 관측하여 그 나이를 추정하는 것으로 우주의 나이의 하한선을 얻을 수 있다. 가장 많이 쓰이는 방법 중 하나는 가장 온도가 낮은 백색왜성의 나이를 측정하는 것이다. 백색왜성은 태양과 비슷한 질량을 가진 별들이 죽으면서 만들어지는데, 백색왜성은 당시 가지고 있던 열 이외에 다른 에너지원이 없기 때문에 나이가 들면서 점점 식고, 어두워지게 된다. 따라서 가장 어둡고, 가장 온도가 낮은 백색왜성을 찾아서 그 냉각 나이를 측정하면 우주의 나이의 하한선을 얻을 수 있다.
별의 나이는 어떻게 측정하는가?
별의 나이는 토륨과 다른 성분들에 의해 만들어진 스펙트럼선들의 상대적인 힘을 측정하기 위해 초거대망원경의 자외선 분광기를 사용하여 추측한다. 선의 힘은 여러 가지 다양한 동위원소를 만들어내는데, 그것들로부터 핵우주 연대학을 사용하여 별의 나이를 짐작하는 것이다.
이 별의 물리적 수치는 태양과 비슷한데 분광형이 태양과 똑같은 G2V 여서 유사 태양으로 분류할 수 있다. 질량은 태양보다 9 퍼센트 무겁고 반지름은 태양보다 1 퍼센트 작다. 나이는 상대적으로 젊어 약 8천만 ~ 2억 년으로 보인다. 젊은 별인만큼 자전 속도는 3.5일에 한 번 돌 정도로 빠르며 자전축은 시선방향에 대해 21도(오차범위 +8, -9도) 기울어져 있다.
별의 나이는 어떻게 측정하는가?
별의 나이는 토륨과 다른 성분들에 의해 만들어진 스펙트럼선들의 상대적인 힘을 측정하기 위해 초거대망원경의 자외선 분광기를 사용하여 추측한다. 선의 힘은 여러 가지 다양한 동위원소를 만들어내는데, 그것들로부터 핵우주 연대학을 사용하여 별의 나이를 짐작하는 것이다.
여기서 "v"는 적도에서의 각속도이며 "t"는 별의 나이이다. 이 관계식은 1972년 앤드류 P. 스쿠마니치가 발견했으며 그의 이름을 따서 '스쿠마니치의 법칙'으로 불린다. 자이로연대학(Gyrochronology)은 태양의 속도를 기준점으로 한 항성의 자전 속도에 기초하여, 그 별의 나이를 결정하는 것이다.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 40gradient_accumulation_steps
: 4learning_rate
: 0.0001adam_epsilon
: 1e-07num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 40per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0001weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-07max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0008 | 1 | 0.4813 |
0.0016 | 2 | 0.5643 |
0.0024 | 3 | 0.4872 |
0.0031 | 4 | 0.3838 |
0.0039 | 5 | 0.4269 |
0.0047 | 6 | 0.434 |
0.0055 | 7 | 0.5153 |
0.0063 | 8 | 0.4429 |
0.0071 | 9 | 0.4464 |
0.0078 | 10 | 0.4187 |
0.0086 | 11 | 0.468 |
0.0094 | 12 | 0.402 |
0.0102 | 13 | 0.3745 |
0.0110 | 14 | 0.3623 |
0.0118 | 15 | 0.3358 |
0.0125 | 16 | 0.3927 |
0.0133 | 17 | 0.4539 |
0.0141 | 18 | 0.3177 |
0.0149 | 19 | 0.2902 |
0.0157 | 20 | 0.3559 |
0.0165 | 21 | 0.2641 |
0.0172 | 22 | 0.2968 |
0.0180 | 23 | 0.2008 |
0.0188 | 24 | 0.2742 |
0.0196 | 25 | 0.3565 |
0.0204 | 26 | 0.2706 |
0.0212 | 27 | 0.2544 |
0.0219 | 28 | 0.2721 |
0.0227 | 29 | 0.2795 |
0.0235 | 30 | 0.2647 |
0.0243 | 31 | 0.164 |
0.0251 | 32 | 0.2574 |
0.0259 | 33 | 0.1962 |
0.0267 | 34 | 0.2739 |
0.0274 | 35 | 0.2286 |
0.0282 | 36 | 0.2376 |
0.0290 | 37 | 0.3125 |
0.0298 | 38 | 0.2401 |
0.0306 | 39 | 0.1922 |
0.0314 | 40 | 0.2479 |
0.0321 | 41 | 0.1851 |
0.0329 | 42 | 0.1813 |
0.0337 | 43 | 0.2471 |
0.0345 | 44 | 0.2561 |
0.0353 | 45 | 0.2568 |
0.0361 | 46 | 0.3049 |
0.0368 | 47 | 0.2404 |
0.0376 | 48 | 0.231 |
0.0384 | 49 | 0.261 |
0.0392 | 50 | 0.2581 |
0.0400 | 51 | 0.2184 |
0.0408 | 52 | 0.2002 |
0.0415 | 53 | 0.2586 |
0.0423 | 54 | 0.1532 |
0.0431 | 55 | 0.2023 |
0.0439 | 56 | 0.2272 |
0.0447 | 57 | 0.2207 |
0.0455 | 58 | 0.2364 |
0.0462 | 59 | 0.2044 |
0.0470 | 60 | 0.2387 |
0.0478 | 61 | 0.2289 |
0.0486 | 62 | 0.1616 |
0.0494 | 63 | 0.1753 |
0.0502 | 64 | 0.1803 |
0.0510 | 65 | 0.2033 |
0.0517 | 66 | 0.2061 |
0.0525 | 67 | 0.2128 |
0.0533 | 68 | 0.2046 |
0.0541 | 69 | 0.1685 |
0.0549 | 70 | 0.1985 |
0.0557 | 71 | 0.1713 |
0.0564 | 72 | 0.21 |
0.0572 | 73 | 0.2085 |
0.0580 | 74 | 0.2144 |
0.0588 | 75 | 0.2099 |
0.0596 | 76 | 0.223 |
0.0604 | 77 | 0.2342 |
0.0611 | 78 | 0.2327 |
0.0619 | 79 | 0.1812 |
0.0627 | 80 | 0.2068 |
0.0635 | 81 | 0.1826 |
0.0643 | 82 | 0.1792 |
0.0651 | 83 | 0.2363 |
0.0658 | 84 | 0.1842 |
0.0666 | 85 | 0.1673 |
0.0674 | 86 | 0.2068 |
0.0682 | 87 | 0.2386 |
0.0690 | 88 | 0.1905 |
0.0698 | 89 | 0.22 |
0.0705 | 90 | 0.2351 |
0.0713 | 91 | 0.2444 |
0.0721 | 92 | 0.1984 |
0.0729 | 93 | 0.1823 |
0.0737 | 94 | 0.201 |
0.0745 | 95 | 0.1548 |
0.0752 | 96 | 0.1824 |
0.0760 | 97 | 0.2315 |
0.0768 | 98 | 0.2042 |
0.0776 | 99 | 0.1579 |
0.0784 | 100 | 0.1906 |
0.0792 | 101 | 0.2058 |
0.0800 | 102 | 0.2094 |
0.0807 | 103 | 0.2149 |
0.0815 | 104 | 0.2138 |
0.0823 | 105 | 0.1932 |
0.0831 | 106 | 0.1874 |
0.0839 | 107 | 0.1945 |
0.0847 | 108 | 0.1705 |
0.0854 | 109 | 0.1832 |
0.0862 | 110 | 0.2075 |
0.0870 | 111 | 0.1586 |
0.0878 | 112 | 0.139 |
0.0886 | 113 | 0.1496 |
0.0894 | 114 | 0.1843 |
0.0901 | 115 | 0.2377 |
0.0909 | 116 | 0.1998 |
0.0917 | 117 | 0.1491 |
0.0925 | 118 | 0.1763 |
0.0933 | 119 | 0.128 |
0.0941 | 120 | 0.1595 |
0.0948 | 121 | 0.1816 |
0.0956 | 122 | 0.2252 |
0.0964 | 123 | 0.1829 |
0.0972 | 124 | 0.1505 |
0.0980 | 125 | 0.1726 |
0.0988 | 126 | 0.2009 |
0.0995 | 127 | 0.2219 |
0.1003 | 128 | 0.1384 |
0.1011 | 129 | 0.1243 |
0.1019 | 130 | 0.2139 |
0.1027 | 131 | 0.1677 |
0.1035 | 132 | 0.1957 |
0.1043 | 133 | 0.1683 |
0.1050 | 134 | 0.168 |
0.1058 | 135 | 0.2021 |
0.1066 | 136 | 0.2112 |
0.1074 | 137 | 0.2093 |
0.1082 | 138 | 0.2279 |
0.1090 | 139 | 0.2001 |
0.1097 | 140 | 0.179 |
0.1105 | 141 | 0.1954 |
0.1113 | 142 | 0.172 |
0.1121 | 143 | 0.1969 |
0.1129 | 144 | 0.1561 |
0.1137 | 145 | 0.1802 |
0.1144 | 146 | 0.1885 |
0.1152 | 147 | 0.1438 |
0.1160 | 148 | 0.1791 |
0.1168 | 149 | 0.1905 |
0.1176 | 150 | 0.2506 |
0.1184 | 151 | 0.2024 |
0.1191 | 152 | 0.2059 |
0.1199 | 153 | 0.2393 |
0.1207 | 154 | 0.1531 |
0.1215 | 155 | 0.1888 |
0.1223 | 156 | 0.1831 |
0.1231 | 157 | 0.1378 |
0.1238 | 158 | 0.1553 |
0.1246 | 159 | 0.2004 |
0.1254 | 160 | 0.2071 |
0.1262 | 161 | 0.1909 |
0.1270 | 162 | 0.1763 |
0.1278 | 163 | 0.1914 |
0.1286 | 164 | 0.1365 |
0.1293 | 165 | 0.2272 |
0.1301 | 166 | 0.1484 |
0.1309 | 167 | 0.2181 |
0.1317 | 168 | 0.2386 |
0.1325 | 169 | 0.2005 |
0.1333 | 170 | 0.1757 |
0.1340 | 171 | 0.1679 |
0.1348 | 172 | 0.1707 |
0.1356 | 173 | 0.1448 |
0.1364 | 174 | 0.1703 |
0.1372 | 175 | 0.1739 |
0.1380 | 176 | 0.1376 |
0.1387 | 177 | 0.1906 |
0.1395 | 178 | 0.2542 |
0.1403 | 179 | 0.1438 |
0.1411 | 180 | 0.1786 |
0.1419 | 181 | 0.1838 |
0.1427 | 182 | 0.1592 |
0.1434 | 183 | 0.1991 |
0.1442 | 184 | 0.1702 |
0.1450 | 185 | 0.1787 |
0.1458 | 186 | 0.1631 |
0.1466 | 187 | 0.2697 |
0.1474 | 188 | 0.1654 |
0.1481 | 189 | 0.2037 |
0.1489 | 190 | 0.1751 |
0.1497 | 191 | 0.212 |
0.1505 | 192 | 0.1531 |
0.1513 | 193 | 0.1802 |
0.1521 | 194 | 0.1421 |
0.1529 | 195 | 0.236 |
0.1536 | 196 | 0.1702 |
0.1544 | 197 | 0.1869 |
0.1552 | 198 | 0.1796 |
0.1560 | 199 | 0.1537 |
0.1568 | 200 | 0.1646 |
0.1576 | 201 | 0.1603 |
0.1583 | 202 | 0.1662 |
0.1591 | 203 | 0.1323 |
0.1599 | 204 | 0.1672 |
0.1607 | 205 | 0.2217 |
0.1615 | 206 | 0.144 |
0.1623 | 207 | 0.1889 |
0.1630 | 208 | 0.159 |
0.1638 | 209 | 0.1298 |
0.1646 | 210 | 0.1245 |
0.1654 | 211 | 0.1815 |
0.1662 | 212 | 0.1771 |
0.1670 | 213 | 0.1441 |
0.1677 | 214 | 0.1834 |
0.1685 | 215 | 0.1997 |
0.1693 | 216 | 0.203 |
0.1701 | 217 | 0.1986 |
0.1709 | 218 | 0.1965 |
0.1717 | 219 | 0.1682 |
0.1724 | 220 | 0.1485 |
0.1732 | 221 | 0.1531 |
0.1740 | 222 | 0.16 |
0.1748 | 223 | 0.1554 |
0.1756 | 224 | 0.1705 |
0.1764 | 225 | 0.1771 |
0.1772 | 226 | 0.1507 |
0.1779 | 227 | 0.1623 |
0.1787 | 228 | 0.1527 |
0.1795 | 229 | 0.1332 |
0.1803 | 230 | 0.1556 |
0.1811 | 231 | 0.1504 |
0.1819 | 232 | 0.1581 |
0.1826 | 233 | 0.15 |
0.1834 | 234 | 0.2012 |
0.1842 | 235 | 0.1587 |
0.1850 | 236 | 0.2141 |
0.1858 | 237 | 0.1431 |
0.1866 | 238 | 0.1092 |
0.1873 | 239 | 0.1688 |
0.1881 | 240 | 0.2185 |
0.1889 | 241 | 0.2071 |
0.1897 | 242 | 0.1575 |
0.1905 | 243 | 0.1251 |
0.1913 | 244 | 0.1692 |
0.1920 | 245 | 0.1746 |
0.1928 | 246 | 0.2024 |
0.1936 | 247 | 0.2074 |
0.1944 | 248 | 0.2422 |
0.1952 | 249 | 0.1994 |
0.1960 | 250 | 0.1672 |
0.1967 | 251 | 0.1474 |
0.1975 | 252 | 0.1888 |
0.1983 | 253 | 0.2173 |
0.1991 | 254 | 0.1448 |
0.1999 | 255 | 0.2403 |
0.2007 | 256 | 0.1652 |
0.2015 | 257 | 0.1929 |
0.2022 | 258 | 0.1272 |
0.2030 | 259 | 0.193 |
0.2038 | 260 | 0.1665 |
0.2046 | 261 | 0.1677 |
0.2054 | 262 | 0.1558 |
0.2062 | 263 | 0.1825 |
0.2069 | 264 | 0.1549 |
0.2077 | 265 | 0.199 |
0.2085 | 266 | 0.1495 |
0.2093 | 267 | 0.1478 |
0.2101 | 268 | 0.168 |
0.2109 | 269 | 0.1015 |
0.2116 | 270 | 0.1924 |
0.2124 | 271 | 0.1397 |
0.2132 | 272 | 0.1449 |
0.2140 | 273 | 0.1797 |
0.2148 | 274 | 0.1689 |
0.2156 | 275 | 0.1738 |
0.2163 | 276 | 0.1758 |
0.2171 | 277 | 0.1298 |
0.2179 | 278 | 0.1889 |
0.2187 | 279 | 0.1377 |
0.2195 | 280 | 0.1592 |
0.2203 | 281 | 0.1506 |
0.2210 | 282 | 0.1622 |
0.2218 | 283 | 0.1484 |
0.2226 | 284 | 0.1493 |
0.2234 | 285 | 0.1305 |
0.2242 | 286 | 0.1131 |
0.2250 | 287 | 0.1466 |
0.2257 | 288 | 0.1267 |
0.2265 | 289 | 0.1426 |
0.2273 | 290 | 0.1649 |
0.2281 | 291 | 0.1263 |
0.2289 | 292 | 0.2029 |
0.2297 | 293 | 0.1845 |
0.2305 | 294 | 0.1364 |
0.2312 | 295 | 0.1688 |
0.2320 | 296 | 0.2093 |
0.2328 | 297 | 0.1605 |
0.2336 | 298 | 0.1206 |
0.2344 | 299 | 0.2165 |
0.2352 | 300 | 0.2139 |
0.2359 | 301 | 0.1673 |
0.2367 | 302 | 0.1455 |
0.2375 | 303 | 0.1617 |
0.2383 | 304 | 0.1663 |
0.2391 | 305 | 0.1649 |
0.2399 | 306 | 0.1358 |
0.2406 | 307 | 0.1746 |
0.2414 | 308 | 0.1664 |
0.2422 | 309 | 0.1135 |
0.2430 | 310 | 0.1612 |
0.2438 | 311 | 0.1529 |
0.2446 | 312 | 0.1367 |
0.2453 | 313 | 0.1709 |
0.2461 | 314 | 0.1757 |
0.2469 | 315 | 0.1885 |
0.2477 | 316 | 0.1792 |
0.2485 | 317 | 0.1195 |
0.2493 | 318 | 0.1451 |
0.2500 | 319 | 0.1684 |
0.2508 | 320 | 0.1299 |
0.2516 | 321 | 0.1867 |
0.2524 | 322 | 0.1899 |
0.2532 | 323 | 0.1329 |
0.2540 | 324 | 0.1403 |
0.2548 | 325 | 0.1862 |
0.2555 | 326 | 0.1407 |
0.2563 | 327 | 0.1756 |
0.2571 | 328 | 0.1465 |
0.2579 | 329 | 0.1638 |
0.2587 | 330 | 0.1506 |
0.2595 | 331 | 0.1431 |
0.2602 | 332 | 0.1975 |
0.2610 | 333 | 0.1678 |
0.2618 | 334 | 0.1695 |
0.2626 | 335 | 0.1905 |
0.2634 | 336 | 0.1754 |
0.2642 | 337 | 0.145 |
0.2649 | 338 | 0.1787 |
0.2657 | 339 | 0.1464 |
0.2665 | 340 | 0.1598 |
0.2673 | 341 | 0.1159 |
0.2681 | 342 | 0.1573 |
0.2689 | 343 | 0.2009 |
0.2696 | 344 | 0.2046 |
0.2704 | 345 | 0.1523 |
0.2712 | 346 | 0.1293 |
0.2720 | 347 | 0.1614 |
0.2728 | 348 | 0.1538 |
0.2736 | 349 | 0.1418 |
0.2743 | 350 | 0.158 |
0.2751 | 351 | 0.1443 |
0.2759 | 352 | 0.1437 |
0.2767 | 353 | 0.1506 |
0.2775 | 354 | 0.1452 |
0.2783 | 355 | 0.1637 |
0.2791 | 356 | 0.1015 |
0.2798 | 357 | 0.1531 |
0.2806 | 358 | 0.162 |
0.2814 | 359 | 0.1166 |
0.2822 | 360 | 0.1968 |
0.2830 | 361 | 0.1828 |
0.2838 | 362 | 0.1281 |
0.2845 | 363 | 0.1738 |
0.2853 | 364 | 0.1785 |
0.2861 | 365 | 0.1475 |
0.2869 | 366 | 0.179 |
0.2877 | 367 | 0.1322 |
0.2885 | 368 | 0.234 |
0.2892 | 369 | 0.1465 |
0.2900 | 370 | 0.125 |
0.2908 | 371 | 0.1945 |
0.2916 | 372 | 0.1728 |
0.2924 | 373 | 0.1246 |
0.2932 | 374 | 0.1662 |
0.2939 | 375 | 0.1881 |
0.2947 | 376 | 0.1409 |
0.2955 | 377 | 0.188 |
0.2963 | 378 | 0.1482 |
0.2971 | 379 | 0.1451 |
0.2979 | 380 | 0.1562 |
0.2986 | 381 | 0.1606 |
0.2994 | 382 | 0.1437 |
0.3002 | 383 | 0.1271 |
0.3010 | 384 | 0.1796 |
0.3018 | 385 | 0.14 |
0.3026 | 386 | 0.1645 |
0.3034 | 387 | 0.1589 |
0.3041 | 388 | 0.1668 |
0.3049 | 389 | 0.1176 |
0.3057 | 390 | 0.1651 |
0.3065 | 391 | 0.1425 |
0.3073 | 392 | 0.194 |
0.3081 | 393 | 0.13 |
0.3088 | 394 | 0.1302 |
0.3096 | 395 | 0.1224 |
0.3104 | 396 | 0.1249 |
0.3112 | 397 | 0.1821 |
0.3120 | 398 | 0.1551 |
0.3128 | 399 | 0.1444 |
0.3135 | 400 | 0.1841 |
0.3143 | 401 | 0.1276 |
0.3151 | 402 | 0.1733 |
0.3159 | 403 | 0.1595 |
0.3167 | 404 | 0.2037 |
0.3175 | 405 | 0.1601 |
0.3182 | 406 | 0.1501 |
0.3190 | 407 | 0.1467 |
0.3198 | 408 | 0.1194 |
0.3206 | 409 | 0.1532 |
0.3214 | 410 | 0.1292 |
0.3222 | 411 | 0.1576 |
0.3229 | 412 | 0.1431 |
0.3237 | 413 | 0.151 |
0.3245 | 414 | 0.1024 |
0.3253 | 415 | 0.1696 |
0.3261 | 416 | 0.129 |
0.3269 | 417 | 0.1934 |
0.3277 | 418 | 0.2072 |
0.3284 | 419 | 0.1387 |
0.3292 | 420 | 0.146 |
0.3300 | 421 | 0.1325 |
0.3308 | 422 | 0.1555 |
0.3316 | 423 | 0.1281 |
0.3324 | 424 | 0.1869 |
0.3331 | 425 | 0.1802 |
0.3339 | 426 | 0.1774 |
0.3347 | 427 | 0.1495 |
0.3355 | 428 | 0.1022 |
0.3363 | 429 | 0.1546 |
0.3371 | 430 | 0.1512 |
0.3378 | 431 | 0.1734 |
0.3386 | 432 | 0.1285 |
0.3394 | 433 | 0.1562 |
0.3402 | 434 | 0.1437 |
0.3410 | 435 | 0.1485 |
0.3418 | 436 | 0.1443 |
0.3425 | 437 | 0.1304 |
0.3433 | 438 | 0.1479 |
0.3441 | 439 | 0.1544 |
0.3449 | 440 | 0.1947 |
0.3457 | 441 | 0.1685 |
0.3465 | 442 | 0.1715 |
0.3472 | 443 | 0.1269 |
0.3480 | 444 | 0.1739 |
0.3488 | 445 | 0.1798 |
0.3496 | 446 | 0.1329 |
0.3504 | 447 | 0.1737 |
0.3512 | 448 | 0.1197 |
0.3519 | 449 | 0.1326 |
0.3527 | 450 | 0.131 |
0.3535 | 451 | 0.1498 |
0.3543 | 452 | 0.1836 |
0.3551 | 453 | 0.115 |
0.3559 | 454 | 0.1766 |
0.3567 | 455 | 0.1289 |
0.3574 | 456 | 0.1359 |
0.3582 | 457 | 0.1245 |
0.3590 | 458 | 0.1793 |
0.3598 | 459 | 0.1615 |
0.3606 | 460 | 0.1122 |
0.3614 | 461 | 0.1767 |
0.3621 | 462 | 0.1464 |
0.3629 | 463 | 0.1377 |
0.3637 | 464 | 0.1341 |
0.3645 | 465 | 0.1511 |
0.3653 | 466 | 0.1444 |
0.3661 | 467 | 0.1407 |
0.3668 | 468 | 0.1602 |
0.3676 | 469 | 0.1352 |
0.3684 | 470 | 0.1203 |
0.3692 | 471 | 0.1367 |
0.3700 | 472 | 0.1554 |
0.3708 | 473 | 0.1006 |
0.3715 | 474 | 0.1499 |
0.3723 | 475 | 0.1324 |
0.3731 | 476 | 0.1654 |
0.3739 | 477 | 0.1509 |
0.3747 | 478 | 0.1237 |
0.3755 | 479 | 0.1298 |
0.3762 | 480 | 0.1403 |
0.3770 | 481 | 0.1314 |
0.3778 | 482 | 0.1704 |
0.3786 | 483 | 0.1285 |
0.3794 | 484 | 0.1896 |
0.3802 | 485 | 0.1358 |
0.3810 | 486 | 0.1065 |
0.3817 | 487 | 0.1382 |
0.3825 | 488 | 0.1372 |
0.3833 | 489 | 0.1215 |
0.3841 | 490 | 0.2131 |
0.3849 | 491 | 0.1512 |
0.3857 | 492 | 0.1323 |
0.3864 | 493 | 0.1398 |
0.3872 | 494 | 0.151 |
0.3880 | 495 | 0.1297 |
0.3888 | 496 | 0.1852 |
0.3896 | 497 | 0.1044 |
0.3904 | 498 | 0.1185 |
0.3911 | 499 | 0.1724 |
0.3919 | 500 | 0.097 |
0.3927 | 501 | 0.1486 |
0.3935 | 502 | 0.1124 |
0.3943 | 503 | 0.1264 |
0.3951 | 504 | 0.0993 |
0.3958 | 505 | 0.1369 |
0.3966 | 506 | 0.1587 |
0.3974 | 507 | 0.1455 |
0.3982 | 508 | 0.1236 |
0.3990 | 509 | 0.1547 |
0.3998 | 510 | 0.1286 |
0.4005 | 511 | 0.1257 |
0.4013 | 512 | 0.1452 |
0.4021 | 513 | 0.1595 |
0.4029 | 514 | 0.1479 |
0.4037 | 515 | 0.166 |
0.4045 | 516 | 0.1623 |
0.4053 | 517 | 0.136 |
0.4060 | 518 | 0.149 |
0.4068 | 519 | 0.1496 |
0.4076 | 520 | 0.1154 |
0.4084 | 521 | 0.1493 |
0.4092 | 522 | 0.113 |
0.4100 | 523 | 0.137 |
0.4107 | 524 | 0.2077 |
0.4115 | 525 | 0.112 |
0.4123 | 526 | 0.1491 |
0.4131 | 527 | 0.1608 |
0.4139 | 528 | 0.1446 |
0.4147 | 529 | 0.1188 |
0.4154 | 530 | 0.137 |
0.4162 | 531 | 0.1072 |
0.4170 | 532 | 0.088 |
0.4178 | 533 | 0.1182 |
0.4186 | 534 | 0.2556 |
0.4194 | 535 | 0.1907 |
0.4201 | 536 | 0.1156 |
0.4209 | 537 | 0.1676 |
0.4217 | 538 | 0.1236 |
0.4225 | 539 | 0.1009 |
0.4233 | 540 | 0.1567 |
0.4241 | 541 | 0.2222 |
0.4248 | 542 | 0.148 |
0.4256 | 543 | 0.1182 |
0.4264 | 544 | 0.1267 |
0.4272 | 545 | 0.127 |
0.4280 | 546 | 0.1372 |
0.4288 | 547 | 0.1299 |
0.4296 | 548 | 0.1711 |
0.4303 | 549 | 0.1608 |
0.4311 | 550 | 0.1278 |
0.4319 | 551 | 0.106 |
0.4327 | 552 | 0.1494 |
0.4335 | 553 | 0.1093 |
0.4343 | 554 | 0.1833 |
0.4350 | 555 | 0.1876 |
0.4358 | 556 | 0.1774 |
0.4366 | 557 | 0.1443 |
0.4374 | 558 | 0.1351 |
0.4382 | 559 | 0.1094 |
0.4390 | 560 | 0.1485 |
0.4397 | 561 | 0.1156 |
0.4405 | 562 | 0.1324 |
0.4413 | 563 | 0.1314 |
0.4421 | 564 | 0.1601 |
0.4429 | 565 | 0.1434 |
0.4437 | 566 | 0.1785 |
0.4444 | 567 | 0.1044 |
0.4452 | 568 | 0.1123 |
0.4460 | 569 | 0.1235 |
0.4468 | 570 | 0.1384 |
0.4476 | 571 | 0.1357 |
0.4484 | 572 | 0.1357 |
0.4491 | 573 | 0.1276 |
0.4499 | 574 | 0.1554 |
0.4507 | 575 | 0.1235 |
0.4515 | 576 | 0.1319 |
0.4523 | 577 | 0.1862 |
0.4531 | 578 | 0.1523 |
0.4539 | 579 | 0.1224 |
0.4546 | 580 | 0.1629 |
0.4554 | 581 | 0.1113 |
0.4562 | 582 | 0.1261 |
0.4570 | 583 | 0.1246 |
0.4578 | 584 | 0.1461 |
0.4586 | 585 | 0.1831 |
0.4593 | 586 | 0.138 |
0.4601 | 587 | 0.1206 |
0.4609 | 588 | 0.1269 |
0.4617 | 589 | 0.1512 |
0.4625 | 590 | 0.1131 |
0.4633 | 591 | 0.1206 |
0.4640 | 592 | 0.1555 |
0.4648 | 593 | 0.1404 |
0.4656 | 594 | 0.101 |
0.4664 | 595 | 0.0881 |
0.4672 | 596 | 0.1793 |
0.4680 | 597 | 0.0995 |
0.4687 | 598 | 0.1369 |
0.4695 | 599 | 0.141 |
0.4703 | 600 | 0.1494 |
0.4711 | 601 | 0.1824 |
0.4719 | 602 | 0.1671 |
0.4727 | 603 | 0.1805 |
0.4734 | 604 | 0.1475 |
0.4742 | 605 | 0.1128 |
0.4750 | 606 | 0.1748 |
0.4758 | 607 | 0.1564 |
0.4766 | 608 | 0.0922 |
0.4774 | 609 | 0.1008 |
0.4782 | 610 | 0.1324 |
0.4789 | 611 | 0.1022 |
0.4797 | 612 | 0.1604 |
0.4805 | 613 | 0.145 |
0.4813 | 614 | 0.1621 |
0.4821 | 615 | 0.15 |
0.4829 | 616 | 0.1092 |
0.4836 | 617 | 0.1239 |
0.4844 | 618 | 0.1352 |
0.4852 | 619 | 0.1098 |
0.4860 | 620 | 0.1341 |
0.4868 | 621 | 0.1538 |
0.4876 | 622 | 0.1146 |
0.4883 | 623 | 0.1498 |
0.4891 | 624 | 0.1358 |
0.4899 | 625 | 0.1571 |
0.4907 | 626 | 0.1508 |
0.4915 | 627 | 0.1424 |
0.4923 | 628 | 0.1731 |
0.4930 | 629 | 0.1398 |
0.4938 | 630 | 0.1234 |
0.4946 | 631 | 0.1409 |
0.4954 | 632 | 0.136 |
0.4962 | 633 | 0.1294 |
0.4970 | 634 | 0.1612 |
0.4977 | 635 | 0.1597 |
0.4985 | 636 | 0.1685 |
0.4993 | 637 | 0.1723 |
0.5001 | 638 | 0.1643 |
0.5009 | 639 | 0.1831 |
0.5017 | 640 | 0.0791 |
0.5024 | 641 | 0.1109 |
0.5032 | 642 | 0.1189 |
0.5040 | 643 | 0.1484 |
0.5048 | 644 | 0.1399 |
0.5056 | 645 | 0.1519 |
0.5064 | 646 | 0.1182 |
0.5072 | 647 | 0.1969 |
0.5079 | 648 | 0.1729 |
0.5087 | 649 | 0.1119 |
0.5095 | 650 | 0.099 |
0.5103 | 651 | 0.1265 |
0.5111 | 652 | 0.1068 |
0.5119 | 653 | 0.173 |
0.5126 | 654 | 0.1059 |
0.5134 | 655 | 0.1622 |
0.5142 | 656 | 0.1787 |
0.5150 | 657 | 0.2004 |
0.5158 | 658 | 0.1282 |
0.5166 | 659 | 0.1218 |
0.5173 | 660 | 0.1457 |
0.5181 | 661 | 0.0966 |
0.5189 | 662 | 0.1101 |
0.5197 | 663 | 0.1581 |
0.5205 | 664 | 0.1162 |
0.5213 | 665 | 0.1724 |
0.5220 | 666 | 0.1455 |
0.5228 | 667 | 0.1586 |
0.5236 | 668 | 0.1283 |
0.5244 | 669 | 0.1475 |
0.5252 | 670 | 0.1136 |
0.5260 | 671 | 0.1461 |
0.5267 | 672 | 0.1789 |
0.5275 | 673 | 0.1617 |
0.5283 | 674 | 0.1344 |
0.5291 | 675 | 0.1603 |
0.5299 | 676 | 0.1529 |
0.5307 | 677 | 0.1135 |
0.5315 | 678 | 0.1312 |
0.5322 | 679 | 0.1493 |
0.5330 | 680 | 0.158 |
0.5338 | 681 | 0.1032 |
0.5346 | 682 | 0.1082 |
0.5354 | 683 | 0.1043 |
0.5362 | 684 | 0.1127 |
0.5369 | 685 | 0.105 |
0.5377 | 686 | 0.1703 |
0.5385 | 687 | 0.1805 |
0.5393 | 688 | 0.1098 |
0.5401 | 689 | 0.1161 |
0.5409 | 690 | 0.107 |
0.5416 | 691 | 0.1619 |
0.5424 | 692 | 0.1076 |
0.5432 | 693 | 0.1248 |
0.5440 | 694 | 0.117 |
0.5448 | 695 | 0.1158 |
0.5456 | 696 | 0.1665 |
0.5463 | 697 | 0.1261 |
0.5471 | 698 | 0.1074 |
0.5479 | 699 | 0.1018 |
0.5487 | 700 | 0.1425 |
0.5495 | 701 | 0.1119 |
0.5503 | 702 | 0.1608 |
0.5510 | 703 | 0.1732 |
0.5518 | 704 | 0.1324 |
0.5526 | 705 | 0.1151 |
0.5534 | 706 | 0.1368 |
0.5542 | 707 | 0.1507 |
0.5550 | 708 | 0.1703 |
0.5558 | 709 | 0.1286 |
0.5565 | 710 | 0.1305 |
0.5573 | 711 | 0.1771 |
0.5581 | 712 | 0.1106 |
0.5589 | 713 | 0.1431 |
0.5597 | 714 | 0.1381 |
0.5605 | 715 | 0.1388 |
0.5612 | 716 | 0.1536 |
0.5620 | 717 | 0.1843 |
0.5628 | 718 | 0.1695 |
0.5636 | 719 | 0.1179 |
0.5644 | 720 | 0.1113 |
0.5652 | 721 | 0.0922 |
0.5659 | 722 | 0.1341 |
0.5667 | 723 | 0.1129 |
0.5675 | 724 | 0.1344 |
0.5683 | 725 | 0.1571 |
0.5691 | 726 | 0.1257 |
0.5699 | 727 | 0.126 |
0.5706 | 728 | 0.1706 |
0.5714 | 729 | 0.1245 |
0.5722 | 730 | 0.1703 |
0.5730 | 731 | 0.1304 |
0.5738 | 732 | 0.1552 |
0.5746 | 733 | 0.1036 |
0.5753 | 734 | 0.1269 |
0.5761 | 735 | 0.1355 |
0.5769 | 736 | 0.1153 |
0.5777 | 737 | 0.0923 |
0.5785 | 738 | 0.1359 |
0.5793 | 739 | 0.1495 |
0.5801 | 740 | 0.1818 |
0.5808 | 741 | 0.1325 |
0.5816 | 742 | 0.1755 |
0.5824 | 743 | 0.1443 |
0.5832 | 744 | 0.1255 |
0.5840 | 745 | 0.1248 |
0.5848 | 746 | 0.1161 |
0.5855 | 747 | 0.1513 |
0.5863 | 748 | 0.1117 |
0.5871 | 749 | 0.156 |
0.5879 | 750 | 0.1238 |
0.5887 | 751 | 0.1318 |
0.5895 | 752 | 0.1406 |
0.5902 | 753 | 0.1065 |
0.5910 | 754 | 0.1227 |
0.5918 | 755 | 0.1444 |
0.5926 | 756 | 0.1059 |
0.5934 | 757 | 0.1307 |
0.5942 | 758 | 0.1253 |
0.5949 | 759 | 0.0993 |
0.5957 | 760 | 0.1243 |
0.5965 | 761 | 0.1326 |
0.5973 | 762 | 0.1638 |
0.5981 | 763 | 0.1423 |
0.5989 | 764 | 0.1804 |
0.5996 | 765 | 0.1176 |
0.6004 | 766 | 0.1022 |
0.6012 | 767 | 0.1451 |
0.6020 | 768 | 0.1497 |
0.6028 | 769 | 0.1407 |
0.6036 | 770 | 0.1235 |
0.6044 | 771 | 0.1017 |
0.6051 | 772 | 0.1705 |
0.6059 | 773 | 0.1385 |
0.6067 | 774 | 0.1194 |
0.6075 | 775 | 0.1029 |
0.6083 | 776 | 0.139 |
0.6091 | 777 | 0.1298 |
0.6098 | 778 | 0.1878 |
0.6106 | 779 | 0.1353 |
0.6114 | 780 | 0.1413 |
0.6122 | 781 | 0.1129 |
0.6130 | 782 | 0.1296 |
0.6138 | 783 | 0.1532 |
0.6145 | 784 | 0.1769 |
0.6153 | 785 | 0.1235 |
0.6161 | 786 | 0.1059 |
0.6169 | 787 | 0.1224 |
0.6177 | 788 | 0.1591 |
0.6185 | 789 | 0.1127 |
0.6192 | 790 | 0.1519 |
0.6200 | 791 | 0.1473 |
0.6208 | 792 | 0.0953 |
0.6216 | 793 | 0.1302 |
0.6224 | 794 | 0.149 |
0.6232 | 795 | 0.1053 |
0.6239 | 796 | 0.1712 |
0.6247 | 797 | 0.1342 |
0.6255 | 798 | 0.1199 |
0.6263 | 799 | 0.1099 |
0.6271 | 800 | 0.1545 |
0.6279 | 801 | 0.1158 |
0.6286 | 802 | 0.1541 |
0.6294 | 803 | 0.1234 |
0.6302 | 804 | 0.1451 |
0.6310 | 805 | 0.1069 |
0.6318 | 806 | 0.1282 |
0.6326 | 807 | 0.1589 |
0.6334 | 808 | 0.1358 |
0.6341 | 809 | 0.1515 |
0.6349 | 810 | 0.1334 |
0.6357 | 811 | 0.1232 |
0.6365 | 812 | 0.1612 |
0.6373 | 813 | 0.1379 |
0.6381 | 814 | 0.1347 |
0.6388 | 815 | 0.1588 |
0.6396 | 816 | 0.1173 |
0.6404 | 817 | 0.1318 |
0.6412 | 818 | 0.1541 |
0.6420 | 819 | 0.1054 |
0.6428 | 820 | 0.1117 |
0.6435 | 821 | 0.1684 |
0.6443 | 822 | 0.1234 |
0.6451 | 823 | 0.1422 |
0.6459 | 824 | 0.0979 |
0.6467 | 825 | 0.1365 |
0.6475 | 826 | 0.1177 |
0.6482 | 827 | 0.1656 |
0.6490 | 828 | 0.1288 |
0.6498 | 829 | 0.1198 |
0.6506 | 830 | 0.1546 |
0.6514 | 831 | 0.1397 |
0.6522 | 832 | 0.1578 |
0.6529 | 833 | 0.1736 |
0.6537 | 834 | 0.1174 |
0.6545 | 835 | 0.1275 |
0.6553 | 836 | 0.0971 |
0.6561 | 837 | 0.1285 |
0.6569 | 838 | 0.1285 |
0.6577 | 839 | 0.1563 |
0.6584 | 840 | 0.155 |
0.6592 | 841 | 0.1398 |
0.6600 | 842 | 0.1465 |
0.6608 | 843 | 0.1201 |
0.6616 | 844 | 0.1278 |
0.6624 | 845 | 0.1155 |
0.6631 | 846 | 0.0946 |
0.6639 | 847 | 0.1152 |
0.6647 | 848 | 0.1191 |
0.6655 | 849 | 0.1175 |
0.6663 | 850 | 0.133 |
0.6671 | 851 | 0.1134 |
0.6678 | 852 | 0.1664 |
0.6686 | 853 | 0.1803 |
0.6694 | 854 | 0.1155 |
0.6702 | 855 | 0.1188 |
0.6710 | 856 | 0.1283 |
0.6718 | 857 | 0.0995 |
0.6725 | 858 | 0.1438 |
0.6733 | 859 | 0.1105 |
0.6741 | 860 | 0.1114 |
0.6749 | 861 | 0.089 |
0.6757 | 862 | 0.1249 |
0.6765 | 863 | 0.1194 |
0.6772 | 864 | 0.1591 |
0.6780 | 865 | 0.128 |
0.6788 | 866 | 0.0787 |
0.6796 | 867 | 0.13 |
0.6804 | 868 | 0.0992 |
0.6812 | 869 | 0.1229 |
0.6820 | 870 | 0.095 |
0.6827 | 871 | 0.1234 |
0.6835 | 872 | 0.1201 |
0.6843 | 873 | 0.1069 |
0.6851 | 874 | 0.1282 |
0.6859 | 875 | 0.1602 |
0.6867 | 876 | 0.1 |
0.6874 | 877 | 0.1437 |
0.6882 | 878 | 0.1167 |
0.6890 | 879 | 0.1841 |
0.6898 | 880 | 0.1011 |
0.6906 | 881 | 0.1264 |
0.6914 | 882 | 0.1249 |
0.6921 | 883 | 0.1261 |
0.6929 | 884 | 0.1608 |
0.6937 | 885 | 0.1398 |
0.6945 | 886 | 0.15 |
0.6953 | 887 | 0.1562 |
0.6961 | 888 | 0.1092 |
0.6968 | 889 | 0.1311 |
0.6976 | 890 | 0.1564 |
0.6984 | 891 | 0.1224 |
0.6992 | 892 | 0.1126 |
0.7000 | 893 | 0.0974 |
0.7008 | 894 | 0.1638 |
0.7015 | 895 | 0.118 |
0.7023 | 896 | 0.1156 |
0.7031 | 897 | 0.1141 |
0.7039 | 898 | 0.1756 |
0.7047 | 899 | 0.1165 |
0.7055 | 900 | 0.142 |
0.7063 | 901 | 0.1705 |
0.7070 | 902 | 0.1311 |
0.7078 | 903 | 0.1045 |
0.7086 | 904 | 0.1034 |
0.7094 | 905 | 0.1205 |
0.7102 | 906 | 0.1448 |
0.7110 | 907 | 0.1318 |
0.7117 | 908 | 0.1369 |
0.7125 | 909 | 0.1427 |
0.7133 | 910 | 0.1218 |
0.7141 | 911 | 0.103 |
0.7149 | 912 | 0.1147 |
0.7157 | 913 | 0.1297 |
0.7164 | 914 | 0.1089 |
0.7172 | 915 | 0.1371 |
0.7180 | 916 | 0.1182 |
0.7188 | 917 | 0.1273 |
0.7196 | 918 | 0.1238 |
0.7204 | 919 | 0.144 |
0.7211 | 920 | 0.0859 |
0.7219 | 921 | 0.0939 |
0.7227 | 922 | 0.0999 |
0.7235 | 923 | 0.1143 |
0.7243 | 924 | 0.1251 |
0.7251 | 925 | 0.107 |
0.7258 | 926 | 0.1077 |
0.7266 | 927 | 0.138 |
0.7274 | 928 | 0.155 |
0.7282 | 929 | 0.0977 |
0.7290 | 930 | 0.1003 |
0.7298 | 931 | 0.1382 |
0.7306 | 932 | 0.1006 |
0.7313 | 933 | 0.1027 |
0.7321 | 934 | 0.1124 |
0.7329 | 935 | 0.1813 |
0.7337 | 936 | 0.1159 |
0.7345 | 937 | 0.0791 |
0.7353 | 938 | 0.1435 |
0.7360 | 939 | 0.1288 |
0.7368 | 940 | 0.1078 |
0.7376 | 941 | 0.127 |
0.7384 | 942 | 0.1211 |
0.7392 | 943 | 0.1442 |
0.7400 | 944 | 0.1668 |
0.7407 | 945 | 0.1679 |
0.7415 | 946 | 0.1168 |
0.7423 | 947 | 0.1626 |
0.7431 | 948 | 0.1538 |
0.7439 | 949 | 0.0938 |
0.7447 | 950 | 0.1657 |
0.7454 | 951 | 0.1303 |
0.7462 | 952 | 0.098 |
0.7470 | 953 | 0.1014 |
0.7478 | 954 | 0.1153 |
0.7486 | 955 | 0.1192 |
0.7494 | 956 | 0.1418 |
0.7501 | 957 | 0.1206 |
0.7509 | 958 | 0.109 |
0.7517 | 959 | 0.1 |
0.7525 | 960 | 0.115 |
0.7533 | 961 | 0.1099 |
0.7541 | 962 | 0.1252 |
0.7549 | 963 | 0.0938 |
0.7556 | 964 | 0.1704 |
0.7564 | 965 | 0.1313 |
0.7572 | 966 | 0.1342 |
0.7580 | 967 | 0.1648 |
0.7588 | 968 | 0.107 |
0.7596 | 969 | 0.1177 |
0.7603 | 970 | 0.1528 |
0.7611 | 971 | 0.1577 |
0.7619 | 972 | 0.1109 |
0.7627 | 973 | 0.1336 |
0.7635 | 974 | 0.1544 |
0.7643 | 975 | 0.1304 |
0.7650 | 976 | 0.1083 |
0.7658 | 977 | 0.1017 |
0.7666 | 978 | 0.1492 |
0.7674 | 979 | 0.0846 |
0.7682 | 980 | 0.1179 |
0.7690 | 981 | 0.1634 |
0.7697 | 982 | 0.0893 |
0.7705 | 983 | 0.1357 |
0.7713 | 984 | 0.1757 |
0.7721 | 985 | 0.1112 |
0.7729 | 986 | 0.1258 |
0.7737 | 987 | 0.123 |
0.7744 | 988 | 0.1354 |
0.7752 | 989 | 0.0855 |
0.7760 | 990 | 0.1167 |
0.7768 | 991 | 0.1131 |
0.7776 | 992 | 0.1222 |
0.7784 | 993 | 0.1447 |
0.7791 | 994 | 0.1122 |
0.7799 | 995 | 0.1508 |
0.7807 | 996 | 0.1484 |
0.7815 | 997 | 0.0985 |
0.7823 | 998 | 0.1686 |
0.7831 | 999 | 0.1509 |
0.7839 | 1000 | 0.1356 |
0.7846 | 1001 | 0.1114 |
0.7854 | 1002 | 0.1098 |
0.7862 | 1003 | 0.1643 |
0.7870 | 1004 | 0.1784 |
0.7878 | 1005 | 0.1038 |
0.7886 | 1006 | 0.1362 |
0.7893 | 1007 | 0.1289 |
0.7901 | 1008 | 0.1188 |
0.7909 | 1009 | 0.1065 |
0.7917 | 1010 | 0.1195 |
0.7925 | 1011 | 0.1142 |
0.7933 | 1012 | 0.0801 |
0.7940 | 1013 | 0.1427 |
0.7948 | 1014 | 0.2034 |
0.7956 | 1015 | 0.1508 |
0.7964 | 1016 | 0.0888 |
0.7972 | 1017 | 0.0847 |
0.7980 | 1018 | 0.1007 |
0.7987 | 1019 | 0.1122 |
0.7995 | 1020 | 0.1215 |
0.8003 | 1021 | 0.1529 |
0.8011 | 1022 | 0.1095 |
0.8019 | 1023 | 0.1364 |
0.8027 | 1024 | 0.0978 |
0.8034 | 1025 | 0.1606 |
0.8042 | 1026 | 0.1131 |
0.8050 | 1027 | 0.0861 |
0.8058 | 1028 | 0.1523 |
0.8066 | 1029 | 0.1444 |
0.8074 | 1030 | 0.1255 |
0.8082 | 1031 | 0.1418 |
0.8089 | 1032 | 0.1007 |
0.8097 | 1033 | 0.1042 |
0.8105 | 1034 | 0.1423 |
0.8113 | 1035 | 0.1137 |
0.8121 | 1036 | 0.1314 |
0.8129 | 1037 | 0.1572 |
0.8136 | 1038 | 0.1188 |
0.8144 | 1039 | 0.0916 |
0.8152 | 1040 | 0.1043 |
0.8160 | 1041 | 0.1333 |
0.8168 | 1042 | 0.1299 |
0.8176 | 1043 | 0.1404 |
0.8183 | 1044 | 0.1209 |
0.8191 | 1045 | 0.0973 |
0.8199 | 1046 | 0.1359 |
0.8207 | 1047 | 0.1194 |
0.8215 | 1048 | 0.2011 |
0.8223 | 1049 | 0.1306 |
0.8230 | 1050 | 0.1073 |
0.8238 | 1051 | 0.1154 |
0.8246 | 1052 | 0.1224 |
0.8254 | 1053 | 0.1045 |
0.8262 | 1054 | 0.1067 |
0.8270 | 1055 | 0.1086 |
0.8277 | 1056 | 0.0923 |
0.8285 | 1057 | 0.1228 |
0.8293 | 1058 | 0.1474 |
0.8301 | 1059 | 0.0949 |
0.8309 | 1060 | 0.1259 |
0.8317 | 1061 | 0.1152 |
0.8325 | 1062 | 0.0937 |
0.8332 | 1063 | 0.1602 |
0.8340 | 1064 | 0.1165 |
0.8348 | 1065 | 0.1036 |
0.8356 | 1066 | 0.1665 |
0.8364 | 1067 | 0.1163 |
0.8372 | 1068 | 0.1124 |
0.8379 | 1069 | 0.1093 |
0.8387 | 1070 | 0.1015 |
0.8395 | 1071 | 0.1602 |
0.8403 | 1072 | 0.0913 |
0.8411 | 1073 | 0.1327 |
0.8419 | 1074 | 0.1149 |
0.8426 | 1075 | 0.1137 |
0.8434 | 1076 | 0.1197 |
0.8442 | 1077 | 0.1335 |
0.8450 | 1078 | 0.1366 |
0.8458 | 1079 | 0.1265 |
0.8466 | 1080 | 0.0921 |
0.8473 | 1081 | 0.1339 |
0.8481 | 1082 | 0.1155 |
0.8489 | 1083 | 0.103 |
0.8497 | 1084 | 0.1302 |
0.8505 | 1085 | 0.1311 |
0.8513 | 1086 | 0.1275 |
0.8520 | 1087 | 0.1585 |
0.8528 | 1088 | 0.0961 |
0.8536 | 1089 | 0.1222 |
0.8544 | 1090 | 0.0887 |
0.8552 | 1091 | 0.1599 |
0.8560 | 1092 | 0.0909 |
0.8568 | 1093 | 0.1566 |
0.8575 | 1094 | 0.1201 |
0.8583 | 1095 | 0.0786 |
0.8591 | 1096 | 0.1383 |
0.8599 | 1097 | 0.1593 |
0.8607 | 1098 | 0.1582 |
0.8615 | 1099 | 0.1474 |
0.8622 | 1100 | 0.0924 |
0.8630 | 1101 | 0.1379 |
0.8638 | 1102 | 0.1324 |
0.8646 | 1103 | 0.1139 |
0.8654 | 1104 | 0.0941 |
0.8662 | 1105 | 0.1107 |
0.8669 | 1106 | 0.1183 |
0.8677 | 1107 | 0.1024 |
0.8685 | 1108 | 0.1346 |
0.8693 | 1109 | 0.131 |
0.8701 | 1110 | 0.1244 |
0.8709 | 1111 | 0.1423 |
0.8716 | 1112 | 0.1604 |
0.8724 | 1113 | 0.146 |
0.8732 | 1114 | 0.1398 |
0.8740 | 1115 | 0.1393 |
0.8748 | 1116 | 0.1643 |
0.8756 | 1117 | 0.1006 |
0.8763 | 1118 | 0.0956 |
0.8771 | 1119 | 0.1304 |
0.8779 | 1120 | 0.1151 |
0.8787 | 1121 | 0.161 |
0.8795 | 1122 | 0.0871 |
0.8803 | 1123 | 0.1028 |
0.8811 | 1124 | 0.1715 |
0.8818 | 1125 | 0.1674 |
0.8826 | 1126 | 0.1073 |
0.8834 | 1127 | 0.0867 |
0.8842 | 1128 | 0.1117 |
0.8850 | 1129 | 0.1333 |
0.8858 | 1130 | 0.126 |
0.8865 | 1131 | 0.0853 |
0.8873 | 1132 | 0.1152 |
0.8881 | 1133 | 0.1467 |
0.8889 | 1134 | 0.1643 |
0.8897 | 1135 | 0.1117 |
0.8905 | 1136 | 0.0909 |
0.8912 | 1137 | 0.1645 |
0.8920 | 1138 | 0.1359 |
0.8928 | 1139 | 0.1204 |
0.8936 | 1140 | 0.1574 |
0.8944 | 1141 | 0.1187 |
0.8952 | 1142 | 0.1588 |
0.8959 | 1143 | 0.1419 |
0.8967 | 1144 | 0.1109 |
0.8975 | 1145 | 0.1048 |
0.8983 | 1146 | 0.1232 |
0.8991 | 1147 | 0.1159 |
0.8999 | 1148 | 0.1442 |
0.9006 | 1149 | 0.1345 |
0.9014 | 1150 | 0.0893 |
0.9022 | 1151 | 0.1033 |
0.9030 | 1152 | 0.1133 |
0.9038 | 1153 | 0.2009 |
0.9046 | 1154 | 0.1669 |
0.9053 | 1155 | 0.1095 |
0.9061 | 1156 | 0.1099 |
0.9069 | 1157 | 0.0893 |
0.9077 | 1158 | 0.137 |
0.9085 | 1159 | 0.1346 |
0.9093 | 1160 | 0.1135 |
0.9101 | 1161 | 0.1003 |
0.9108 | 1162 | 0.1224 |
0.9116 | 1163 | 0.098 |
0.9124 | 1164 | 0.1353 |
0.9132 | 1165 | 0.1481 |
0.9140 | 1166 | 0.1168 |
0.9148 | 1167 | 0.0794 |
0.9155 | 1168 | 0.0979 |
0.9163 | 1169 | 0.1093 |
0.9171 | 1170 | 0.1022 |
0.9179 | 1171 | 0.1498 |
0.9187 | 1172 | 0.1596 |
0.9195 | 1173 | 0.1657 |
0.9202 | 1174 | 0.1195 |
0.9210 | 1175 | 0.1278 |
0.9218 | 1176 | 0.1307 |
0.9226 | 1177 | 0.1071 |
0.9234 | 1178 | 0.0969 |
0.9242 | 1179 | 0.1192 |
0.9249 | 1180 | 0.1166 |
0.9257 | 1181 | 0.1221 |
0.9265 | 1182 | 0.1179 |
0.9273 | 1183 | 0.1414 |
0.9281 | 1184 | 0.1247 |
0.9289 | 1185 | 0.1148 |
0.9296 | 1186 | 0.1211 |
0.9304 | 1187 | 0.1373 |
0.9312 | 1188 | 0.1105 |
0.9320 | 1189 | 0.0911 |
0.9328 | 1190 | 0.1205 |
0.9336 | 1191 | 0.1479 |
0.9344 | 1192 | 0.115 |
0.9351 | 1193 | 0.0951 |
0.9359 | 1194 | 0.1501 |
0.9367 | 1195 | 0.1069 |
0.9375 | 1196 | 0.1091 |
0.9383 | 1197 | 0.0988 |
0.9391 | 1198 | 0.1278 |
0.9398 | 1199 | 0.1221 |
0.9406 | 1200 | 0.1418 |
0.9414 | 1201 | 0.1354 |
0.9422 | 1202 | 0.1435 |
0.9430 | 1203 | 0.101 |
0.9438 | 1204 | 0.1119 |
0.9445 | 1205 | 0.1566 |
0.9453 | 1206 | 0.1238 |
0.9461 | 1207 | 0.1008 |
0.9469 | 1208 | 0.1126 |
0.9477 | 1209 | 0.0897 |
0.9485 | 1210 | 0.1486 |
0.9492 | 1211 | 0.0976 |
0.9500 | 1212 | 0.124 |
0.9508 | 1213 | 0.1034 |
0.9516 | 1214 | 0.1229 |
0.9524 | 1215 | 0.1301 |
0.9532 | 1216 | 0.1363 |
0.9539 | 1217 | 0.1161 |
0.9547 | 1218 | 0.1199 |
0.9555 | 1219 | 0.0815 |
0.9563 | 1220 | 0.1034 |
0.9571 | 1221 | 0.1554 |
0.9579 | 1222 | 0.1266 |
0.9587 | 1223 | 0.1153 |
0.9594 | 1224 | 0.1129 |
0.9602 | 1225 | 0.1228 |
0.9610 | 1226 | 0.1268 |
0.9618 | 1227 | 0.1515 |
0.9626 | 1228 | 0.0885 |
0.9634 | 1229 | 0.1142 |
0.9641 | 1230 | 0.187 |
0.9649 | 1231 | 0.0836 |
0.9657 | 1232 | 0.0967 |
0.9665 | 1233 | 0.1516 |
0.9673 | 1234 | 0.0581 |
0.9681 | 1235 | 0.0847 |
0.9688 | 1236 | 0.1105 |
0.9696 | 1237 | 0.0958 |
0.9704 | 1238 | 0.1238 |
0.9712 | 1239 | 0.1076 |
0.9720 | 1240 | 0.1137 |
0.9728 | 1241 | 0.1236 |
0.9735 | 1242 | 0.129 |
0.9743 | 1243 | 0.1113 |
0.9751 | 1244 | 0.1466 |
0.9759 | 1245 | 0.1593 |
0.9767 | 1246 | 0.1151 |
0.9775 | 1247 | 0.153 |
0.9782 | 1248 | 0.1564 |
0.9790 | 1249 | 0.1208 |
0.9798 | 1250 | 0.0925 |
0.9806 | 1251 | 0.1146 |
0.9814 | 1252 | 0.1043 |
0.9822 | 1253 | 0.0926 |
0.9830 | 1254 | 0.1442 |
0.9837 | 1255 | 0.134 |
0.9845 | 1256 | 0.0841 |
0.9853 | 1257 | 0.1256 |
0.9861 | 1258 | 0.12 |
0.9869 | 1259 | 0.0815 |
0.9877 | 1260 | 0.1298 |
0.9884 | 1261 | 0.1569 |
0.9892 | 1262 | 0.1296 |
0.9900 | 1263 | 0.1418 |
0.9908 | 1264 | 0.1204 |
0.9916 | 1265 | 0.1207 |
0.9924 | 1266 | 0.1116 |
0.9931 | 1267 | 0.0807 |
0.9939 | 1268 | 0.1082 |
0.9947 | 1269 | 0.1213 |
0.9955 | 1270 | 0.1156 |
0.9963 | 1271 | 0.1517 |
0.9971 | 1272 | 0.1238 |
0.9978 | 1273 | 0.1313 |
0.9986 | 1274 | 0.131 |
0.9994 | 1275 | 0.1584 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.3.1+cu121
- Accelerate: 1.1.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for seongil-dn/gte-base-250k-answerableHN
Base model
Alibaba-NLP/gte-multilingual-base