segformer-b1-finetuned-cityscapes-1024-1024-with-after-demo-ds

This model is a fine-tuned version of nvidia/segformer-b1-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0153
  • Mean Iou: 0.9689
  • Mean Accuracy: 0.9858
  • Overall Accuracy: 0.9947
  • Accuracy Default: 1e-06
  • Accuracy Pipe: 0.9729
  • Accuracy Floor: 0.9861
  • Accuracy Background: 0.9985
  • Iou Default: 1e-06
  • Iou Pipe: 0.9305
  • Iou Floor: 0.9802
  • Iou Background: 0.9958

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Default Accuracy Pipe Accuracy Floor Accuracy Background Iou Default Iou Pipe Iou Floor Iou Background
0.333 1.0 55 0.1193 0.8358 0.8688 0.9725 1e-06 0.6617 0.9467 0.9981 1e-06 0.5954 0.9420 0.9700
0.0978 2.0 110 0.0734 0.8938 0.9399 0.9817 1e-06 0.8567 0.9709 0.9921 1e-06 0.7472 0.9523 0.9818
0.0647 3.0 165 0.0529 0.9169 0.9580 0.9860 1e-06 0.9093 0.9696 0.9951 1e-06 0.8023 0.9617 0.9866
0.0519 4.0 220 0.0455 0.9175 0.9445 0.9861 1e-06 0.8663 0.9692 0.9979 1e-06 0.8031 0.9638 0.9855
0.0457 5.0 275 0.0413 0.9198 0.9687 0.9866 1e-06 0.9356 0.9786 0.9919 1e-06 0.8098 0.9614 0.9881
0.0407 6.0 330 0.0360 0.9283 0.9584 0.9882 1e-06 0.9010 0.9780 0.9962 1e-06 0.8320 0.9632 0.9897
0.0363 7.0 385 0.0318 0.9399 0.9698 0.9897 1e-06 0.9385 0.9737 0.9973 1e-06 0.8614 0.9680 0.9904
0.0335 8.0 440 0.0295 0.9423 0.9727 0.9904 1e-06 0.9443 0.9770 0.9969 1e-06 0.8652 0.9702 0.9915
0.0318 9.0 495 0.0288 0.9425 0.9746 0.9905 1e-06 0.9492 0.9784 0.9963 1e-06 0.8664 0.9694 0.9918
0.0292 10.0 550 0.0262 0.9478 0.9752 0.9912 1e-06 0.9510 0.9769 0.9976 1e-06 0.8803 0.9710 0.9922
0.0291 11.0 605 0.0270 0.9466 0.9720 0.9909 1e-06 0.9415 0.9765 0.9979 1e-06 0.8774 0.9708 0.9916
0.0275 12.0 660 0.0249 0.9496 0.9793 0.9916 1e-06 0.9625 0.9784 0.9971 1e-06 0.8835 0.9723 0.9929
0.0264 13.0 715 0.0246 0.9514 0.9716 0.9915 1e-06 0.9383 0.9782 0.9984 1e-06 0.8901 0.9720 0.9920
0.0255 14.0 770 0.0242 0.9500 0.9812 0.9917 1e-06 0.9677 0.9792 0.9967 1e-06 0.8846 0.9723 0.9932
0.0248 15.0 825 0.0230 0.9534 0.9785 0.9921 1e-06 0.9598 0.9777 0.9980 1e-06 0.8940 0.9732 0.9931
0.0241 16.0 880 0.0233 0.9523 0.9806 0.9920 1e-06 0.9666 0.9778 0.9975 1e-06 0.8906 0.9731 0.9932
0.023 17.0 935 0.0215 0.9562 0.9778 0.9925 1e-06 0.9553 0.9801 0.9982 1e-06 0.9015 0.9738 0.9934
0.0223 18.0 990 0.0212 0.9562 0.9780 0.9925 1e-06 0.9546 0.9816 0.9979 1e-06 0.9011 0.9737 0.9937
0.022 19.0 1045 0.0205 0.9558 0.9810 0.9927 1e-06 0.9640 0.9813 0.9975 1e-06 0.8995 0.9737 0.9941
0.0213 20.0 1100 0.0207 0.9582 0.9764 0.9926 1e-06 0.9504 0.9801 0.9986 1e-06 0.9069 0.9745 0.9932
0.0213 21.0 1155 0.0211 0.9566 0.9801 0.9927 1e-06 0.9624 0.9796 0.9981 1e-06 0.9014 0.9746 0.9937
0.0206 22.0 1210 0.0202 0.9589 0.9799 0.9929 1e-06 0.9608 0.9804 0.9983 1e-06 0.9078 0.9752 0.9938
0.0199 23.0 1265 0.0194 0.9596 0.9813 0.9931 1e-06 0.9644 0.9812 0.9981 1e-06 0.9096 0.9750 0.9942
0.0192 24.0 1320 0.0194 0.9590 0.9831 0.9932 1e-06 0.9710 0.9803 0.9981 1e-06 0.9070 0.9754 0.9945
0.019 25.0 1375 0.0189 0.9608 0.9834 0.9933 1e-06 0.9703 0.9820 0.9978 1e-06 0.9124 0.9754 0.9945
0.0189 26.0 1430 0.0195 0.9602 0.9822 0.9932 1e-06 0.9675 0.9808 0.9983 1e-06 0.9103 0.9758 0.9943
0.0185 27.0 1485 0.0204 0.9577 0.9804 0.9930 1e-06 0.9617 0.9815 0.9981 1e-06 0.9035 0.9754 0.9942
0.0185 28.0 1540 0.0188 0.9625 0.9808 0.9935 1e-06 0.9616 0.9822 0.9986 1e-06 0.9167 0.9766 0.9944
0.0178 29.0 1595 0.0186 0.9626 0.9801 0.9935 1e-06 0.9588 0.9829 0.9985 1e-06 0.9166 0.9768 0.9943
0.0176 30.0 1650 0.0192 0.9622 0.9802 0.9935 1e-06 0.9594 0.9826 0.9986 1e-06 0.9156 0.9766 0.9945
0.0175 31.0 1705 0.0175 0.9631 0.9839 0.9937 1e-06 0.9710 0.9827 0.9981 1e-06 0.9176 0.9769 0.9948
0.017 32.0 1760 0.0183 0.9615 0.9852 0.9936 1e-06 0.9761 0.9814 0.9981 1e-06 0.9130 0.9765 0.9949
0.0172 33.0 1815 0.0173 0.9646 0.9834 0.9938 1e-06 0.9690 0.9830 0.9984 1e-06 0.9218 0.9772 0.9948
0.0167 34.0 1870 0.0175 0.9625 0.9857 0.9938 1e-06 0.9768 0.9822 0.9981 1e-06 0.9156 0.9769 0.9951
0.0164 35.0 1925 0.0170 0.9643 0.9854 0.9940 1e-06 0.9749 0.9832 0.9981 1e-06 0.9200 0.9776 0.9952
0.016 36.0 1980 0.0166 0.9657 0.9844 0.9941 1e-06 0.9710 0.9837 0.9984 1e-06 0.9237 0.9782 0.9952
0.0161 37.0 2035 0.0169 0.9661 0.9830 0.9941 1e-06 0.9668 0.9834 0.9987 1e-06 0.9254 0.9780 0.9949
0.0156 38.0 2090 0.0172 0.9648 0.9840 0.9939 1e-06 0.9706 0.9829 0.9984 1e-06 0.9220 0.9774 0.9949
0.0156 39.0 2145 0.0170 0.9640 0.9857 0.9940 1e-06 0.9769 0.9817 0.9985 1e-06 0.9192 0.9774 0.9953
0.0152 40.0 2200 0.0164 0.9667 0.9845 0.9942 1e-06 0.9710 0.9839 0.9985 1e-06 0.9267 0.9783 0.9952
0.0153 41.0 2255 0.0164 0.9663 0.9854 0.9942 1e-06 0.9748 0.9830 0.9985 1e-06 0.9256 0.9780 0.9953
0.016 42.0 2310 0.0162 0.9662 0.9854 0.9942 1e-06 0.9744 0.9833 0.9985 1e-06 0.9254 0.9778 0.9954
0.0157 43.0 2365 0.0162 0.9670 0.9849 0.9943 1e-06 0.9724 0.9837 0.9986 1e-06 0.9269 0.9786 0.9953
0.0148 44.0 2420 0.0167 0.9671 0.9850 0.9943 1e-06 0.9719 0.9849 0.9983 1e-06 0.9273 0.9786 0.9953
0.0149 45.0 2475 0.0165 0.9660 0.9853 0.9943 1e-06 0.9730 0.9846 0.9983 1e-06 0.9235 0.9789 0.9955
0.0144 46.0 2530 0.0154 0.9670 0.9870 0.9945 1e-06 0.9784 0.9844 0.9983 1e-06 0.9260 0.9791 0.9958
0.0142 47.0 2585 0.0150 0.9685 0.9865 0.9946 1e-06 0.9762 0.9847 0.9985 1e-06 0.9302 0.9794 0.9957
0.0142 48.0 2640 0.0154 0.9672 0.9870 0.9945 1e-06 0.9784 0.9841 0.9984 1e-06 0.9268 0.9792 0.9957
0.0144 49.0 2695 0.0152 0.9677 0.9862 0.9945 1e-06 0.9754 0.9847 0.9985 1e-06 0.9284 0.9791 0.9957
0.0141 50.0 2750 0.0154 0.9681 0.9857 0.9946 1e-06 0.9729 0.9857 0.9984 1e-06 0.9289 0.9796 0.9957
0.0136 51.0 2805 0.0153 0.9690 0.9855 0.9947 1e-06 0.9728 0.9850 0.9987 1e-06 0.9317 0.9797 0.9957
0.0138 52.0 2860 0.0150 0.9691 0.9866 0.9947 1e-06 0.9767 0.9846 0.9986 1e-06 0.9320 0.9796 0.9957
0.014 53.0 2915 0.0158 0.9673 0.9853 0.9945 1e-06 0.9720 0.9855 0.9984 1e-06 0.9266 0.9798 0.9956
0.0136 54.0 2970 0.0154 0.9693 0.9857 0.9948 1e-06 0.9725 0.9863 0.9985 1e-06 0.9319 0.9802 0.9958
0.0138 55.0 3025 0.0154 0.9692 0.9853 0.9947 1e-06 0.9717 0.9855 0.9986 1e-06 0.9323 0.9798 0.9956
0.0134 56.0 3080 0.0153 0.9689 0.9857 0.9947 1e-06 0.9728 0.9860 0.9984 1e-06 0.9312 0.9797 0.9957
0.0135 57.0 3135 0.0154 0.9695 0.9863 0.9948 1e-06 0.9747 0.9855 0.9986 1e-06 0.9325 0.9800 0.9958
0.0133 58.0 3190 0.0154 0.9689 0.9859 0.9947 1e-06 0.9739 0.9854 0.9985 1e-06 0.9313 0.9798 0.9957
0.0134 59.0 3245 0.0152 0.9696 0.9862 0.9948 1e-06 0.9745 0.9856 0.9986 1e-06 0.9328 0.9801 0.9958
0.0138 60.0 3300 0.0153 0.9689 0.9858 0.9947 1e-06 0.9729 0.9861 0.9985 1e-06 0.9305 0.9802 0.9958

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
17
Safetensors
Model size
13.7M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for selvaa/segformer-b1-finetuned-cityscapes-1024-1024-with-after-demo-ds

Finetuned
(8)
this model