Phi-3.5-MoE-instruct-GGUF

Original Model

microsoft/Phi-3.5-MoE-instruct

Run with LlamaEdge

  • LlamaEdge version: v0.16.0 and above

  • Prompt template

    • Prompt type: phi-3-chat

    • Prompt string

      <|system|>
      {system_message}<|end|>
      <|user|>
      {user_message_1}<|end|>
      <|assistant|>
      {assistant_message_1}<|end|>
      <|user|>
      {user_message_2}<|end|>
      <|assistant|>
      
  • Context size: 128000

  • Run as LlamaEdge service

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:Phi-3.5-MoE-instruct-Q5_K_M.gguf \
      llama-api-server.wasm \
      --prompt-template phi-3-chat \
      --ctx-size 128000 \
      --model-name phi-3-moe
    
  • Run as LlamaEdge command app

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:Phi-3.5-MoE-instruct-Q5_K_M.gguf \
      llama-chat.wasm \
      --prompt-template phi-3-chat \
      --ctx-size 128000
    

Quantized GGUF Models

Name Quant method Bits Size Use case
Phi-3.5-MoE-instruct-Q2_K.gguf Q2_K 2 15.3 GB smallest, significant quality loss - not recommended for most purposes
Phi-3.5-MoE-instruct-Q3_K_L.gguf Q3_K_L 3 21.7 GB small, substantial quality loss
Phi-3.5-MoE-instruct-Q3_K_M.gguf Q3_K_M 3 20.0 GB very small, high quality loss
Phi-3.5-MoE-instruct-Q3_K_S.gguf Q3_K_S 3 18.1 GB very small, high quality loss
Phi-3.5-MoE-instruct-Q4_0.gguf Q4_0 4 23.6 GB legacy; small, very high quality loss - prefer using Q3_K_M
Phi-3.5-MoE-instruct-Q4_K_M.gguf Q4_K_M 4 25.3 GB medium, balanced quality - recommended
Phi-3.5-MoE-instruct-Q4_K_S.gguf Q4_K_S 4 23.8 GB small, greater quality loss
Phi-3.5-MoE-instruct-Q5_0.gguf Q5_0 5 28.8 GB legacy; medium, balanced quality - prefer using Q4_K_M
Phi-3.5-MoE-instruct-Q5_K_M.gguf Q5_K_M 5 29.7 GB large, very low quality loss - recommended
Phi-3.5-MoE-instruct-Q5_K_S.gguf Q5_K_S 5 28.8 GB large, low quality loss - recommended
Phi-3.5-MoE-instruct-Q6_K.gguf Q6_K 6 34.4 GB very large, extremely low quality loss
Phi-3.5-MoE-instruct-Q8_0.gguf Q8_0 8 44.5 GB very large, extremely low quality loss - not recommended
Phi-3.5-MoE-instruct-f16-00001-of-00003.gguf f16 16 29.8 GB
Phi-3.5-MoE-instruct-f16-00002-of-00003.gguf f16 16 29.4 GB
Phi-3.5-MoE-instruct-f16-00003-of-00003.gguf f16 16 24.5 GB

Quantized with llama.cpp b4462.

Downloads last month
227
GGUF
Model size
41.9B params
Architecture
phimoe

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for second-state/Phi-3.5-MoE-instruct-GGUF

Quantized
(8)
this model