BERTopic_generationidentitaire

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("sdantonio/BERTopic_generationidentitaire")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 6
  • Number of training documents: 1102
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 france - lyonnaise - grenoble - peines - militants 23 -1_france_lyonnaise_grenoble_peines
0 identitaires - france - lyonnais - montpellier - migrants 12 0_identitaires_france_lyonnais_montpellier
1 identitaires - france - turquie - imposture - dubois 847 1_identitaires_france_turquie_imposture
2 identitaires - france - lyonnais - musulmans - migrants 96 2_identitaires_france_lyonnais_musulmans
3 identitaires - france - banderole - djihadistes - montpellier 92 3_identitaires_france_banderole_djihadistes
4 identitaires - vraie - dubois - victoires - publications 32 4_identitaires_vraie_dubois_victoires

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.23.5
  • HDBSCAN: 0.8.38.post1
  • UMAP: 0.5.6
  • Pandas: 2.2.2
  • Scikit-Learn: 1.5.1
  • Sentence-transformers: 3.0.1
  • Transformers: 4.44.2
  • Numba: 0.60.0
  • Plotly: 5.24.0
  • Python: 3.10.12
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.