BERTopic_astrosenmovimiento

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("sdantonio/BERTopic_astrosenmovimiento")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 6
  • Number of training documents: 404
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 inenarrable - queridas - encuadrando - reiniciar - encapsulan 16 -1_inenarrable_queridas_encuadrando_reiniciar
0 genes - tardes - bellas - mercurio - venus 6 0_genes_tardes_bellas_mercurio
1 adentro - venus - mercurio - escorpio - suen 151 1_adentro_venus_mercurio_escorpio
2 bellas - venus - eclipse - comparto - pluto 129 2_bellas_venus_eclipse_comparto
3 bellas - mercurio - escorpio - venus - comparto 58 3_bellas_mercurio_escorpio_venus
4 historias - lxs - sinergia - bellas - venus 44 4_historias_lxs_sinergia_bellas

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.23.5
  • HDBSCAN: 0.8.38.post1
  • UMAP: 0.5.6
  • Pandas: 2.2.2
  • Scikit-Learn: 1.5.1
  • Sentence-transformers: 3.0.1
  • Transformers: 4.44.2
  • Numba: 0.60.0
  • Plotly: 5.24.0
  • Python: 3.10.12
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.