BERTopic_TheWellnessCompany

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("sdantonio/BERTopic_TheWellnessCompany")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 9
  • Number of training documents: 481
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 thewellnesscompany - shots - reprisal - serves - coulson 12 -1_thewellnesscompany_shots_reprisal_serves
0 thewellnesscompany - gessling - compelling - prolonged - daily_clout 41 0_thewellnesscompany_gessling_compelling_prolonged
1 cardiologists - thewellnesscompany - myocarditis - epidemiologist - publications 138 1_cardiologists_thewellnesscompany_myocarditis_epidemiologist
2 myocarditis - thewellnesscompany - prolonged - shots - reprisal 96 2_myocarditis_thewellnesscompany_prolonged_shots
3 thewellnesscompany - packed - prolonged - dissolved - pomegranate 80 3_thewellnesscompany_packed_prolonged_dissolved
4 thewellnesscompany - tedros - insights - marik - toxicity 52 4_thewellnesscompany_tedros_insights_marik
5 ivermectin - thewellnesscompany - epidemiologist - hydroxychloroquine - misbehavior 21 5_ivermectin_thewellnesscompany_epidemiologist_hydroxychloroquine
6 thewellnesscompany - hearts - concerns - reprisal - shots 21 6_thewellnesscompany_hearts_concerns_reprisal
7 backtobasicsconference - unprepared - pregnancytalk - twcadventures - may9th 20 7_backtobasicsconference_unprepared_pregnancytalk_twcadventures

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.23.5
  • HDBSCAN: 0.8.38.post1
  • UMAP: 0.5.6
  • Pandas: 2.2.2
  • Scikit-Learn: 1.5.1
  • Sentence-transformers: 3.0.1
  • Transformers: 4.44.2
  • Numba: 0.60.0
  • Plotly: 5.24.0
  • Python: 3.10.12
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.