merve's picture
merve HF staff
Removed empty sections
4680ce9
metadata
library_name: sklearn
tags:
  - sklearn
  - skops
  - tabular-classification
model_file: model.pkl
widget:
  structuredData:
    x0:
      - 19.89
      - 12.89
      - 17.14
    x1:
      - 20.26
      - 13.12
      - 16.4
    x10:
      - 0.5079
      - 0.1532
      - 1.046
    x11:
      - 0.8737
      - 0.469
      - 0.976
    x12:
      - 3.654
      - 1.115
      - 7.276
    x13:
      - 59.7
      - 12.68
      - 111.4
    x14:
      - 0.005089
      - 0.004731
      - 0.008029
    x15:
      - 0.02303
      - 0.01345
      - 0.03799
    x16:
      - 0.03052
      - 0.01652
      - 0.03732
    x17:
      - 0.01178
      - 0.005905
      - 0.02397
    x18:
      - 0.01057
      - 0.01619
      - 0.02308
    x19:
      - 0.003391
      - 0.002081
      - 0.007444
    x2:
      - 130.5
      - 81.89
      - 116
    x20:
      - 23.73
      - 13.62
      - 22.25
    x21:
      - 25.23
      - 15.54
      - 21.4
    x22:
      - 160.5
      - 87.4
      - 152.4
    x23:
      - 1646
      - 577
      - 1461
    x24:
      - 0.1417
      - 0.09616
      - 0.1545
    x25:
      - 0.3309
      - 0.1147
      - 0.3949
    x26:
      - 0.4185
      - 0.1186
      - 0.3853
    x27:
      - 0.1613
      - 0.05366
      - 0.255
    x28:
      - 0.2549
      - 0.2309
      - 0.4066
    x29:
      - 0.09136
      - 0.06915
      - 0.1059
    x3:
      - 1214
      - 515.9
      - 912.7
    x4:
      - 0.1037
      - 0.06955
      - 0.1186
    x5:
      - 0.131
      - 0.03729
      - 0.2276
    x6:
      - 0.1411
      - 0.0226
      - 0.2229
    x7:
      - 0.09431
      - 0.01171
      - 0.1401
    x8:
      - 0.1802
      - 0.1337
      - 0.304
    x9:
      - 0.06188
      - 0.05581
      - 0.07413

Model description

This is a Decision Tree Classifier trained on breast cancer dataset and pruned with CCP.

Intended uses & limitations

This model is trained for educational purposes.

Training Procedure

Hyperparameters

The model is trained with below hyperparameters.

Click to expand
Hyperparameter Value
ccp_alpha 0.0
class_weight
criterion gini
max_depth
max_features
max_leaf_nodes
min_impurity_decrease 0.0
min_impurity_split
min_samples_leaf 1
min_samples_split 2
min_weight_fraction_leaf 0.0
random_state 0
splitter best

Model Plot

The model plot is below.

DecisionTreeClassifier(random_state=0)

Evaluation Results

You can find the details about evaluation process and the evaluation results.

Metric Value
accuracy 0.937063
f1 score 0.937063

How to Get Started with the Model

Use the code below to get started with the model.

import joblib
import json
import pandas as pd
clf = joblib.load(model.pkl)
with open("config.json") as f:
    config = json.load(f)
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))

Additional Content

Feature Importances

Feature Importances

Tree Splits

Tree Splits

Confusion Matrix

Confusion Matrix