|
--- |
|
base_model: black-forest-labs/FLUX.1-dev |
|
datasets: TIGER-Lab/OmniEdit-Filtered-1.2M |
|
library_name: diffusers |
|
license: other |
|
inference: true |
|
tags: |
|
- flux |
|
- flux-diffusers |
|
- text-to-image |
|
- diffusers |
|
- control |
|
- diffusers-training |
|
widget: |
|
- text: Give this the look of a traditional Japanese woodblock print. |
|
output: |
|
url: >- |
|
https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_car.jpg |
|
- text: transform the setting to a winter scene |
|
output: |
|
url: >- |
|
https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_green_creature.jpg |
|
- text: turn the color of mushroom to gray |
|
output: |
|
url: >- |
|
https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_mushroom.jpg |
|
- text: Change it to look like it's in the style of an impasto painting. |
|
output: |
|
url: >- |
|
https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_norte_dam.jpg |
|
--- |
|
|
|
# Flux Edit |
|
|
|
<Gallery /> |
|
|
|
These are the control weights trained on [black-forest-labs/FLUX.1-dev](htpss://hf.co/black-forest-labs/FLUX.1-dev) |
|
and [TIGER-Lab/OmniEdit-Filtered-1.2M](https://huggingface.co./datasets/TIGER-Lab/OmniEdit-Filtered-1.2M) for image editing. We use the |
|
[Flux Control framework](https://blackforestlabs.ai/flux-1-tools/) for fine-tuning. |
|
|
|
|
|
## License |
|
|
|
Please adhere to the licensing terms as described [here](https://huggingface.co./black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
### Inference |
|
|
|
```py |
|
from diffusers import FluxControlPipeline, FluxTransformer2DModel |
|
from diffusers.utils import load_image |
|
import torch |
|
|
|
path = "sayakpaul/FLUX.1-dev-edit-v0" |
|
edit_transformer = FluxTransformer2DModel.from_pretrained(path, torch_dtype=torch.bfloat16) |
|
pipeline = FluxControlPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", transformer=edit_transformer, torch_dtype=torch.bfloat16 |
|
).to("cuda") |
|
|
|
url = "https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/assets/mushroom.jpg" |
|
image = load_image(url) # resize as needed. |
|
print(image.size) |
|
|
|
prompt = "turn the color of mushroom to gray" |
|
image = pipeline( |
|
control_image=image, |
|
prompt=prompt, |
|
guidance_scale=30., # change this as needed. |
|
num_inference_steps=50, # change this as needed. |
|
max_sequence_length=512, |
|
height=image.height, |
|
width=image.width, |
|
generator=torch.manual_seed(0) |
|
).images[0] |
|
image.save("edited_image.png") |
|
``` |
|
|
|
### Speeding inference with a turbo LoRA |
|
|
|
We can speed up the inference by reducing the `num_inference_steps` to produce a nice image by using turbo LoRA like [`ByteDance/Hyper-SD`](https://hf.co/ByteDance/Hyper-SD). |
|
|
|
Make sure to install `peft` before running the code below: `pip install -U peft`. |
|
|
|
<details> |
|
<summary>Code</summary> |
|
|
|
```py |
|
from diffusers import FluxControlPipeline, FluxTransformer2DModel |
|
from diffusers.utils import load_image |
|
from huggingface_hub import hf_hub_download |
|
import torch |
|
|
|
path = "sayakpaul/FLUX.1-dev-edit-v0" |
|
edit_transformer = FluxTransformer2DModel.from_pretrained(path, torch_dtype=torch.bfloat16) |
|
pipeline = FluxControlPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", transformer=edit_transformer, torch_dtype=torch.bfloat16 |
|
).to("cuda") |
|
|
|
# load the turbo LoRA |
|
pipeline.load_lora_weights( |
|
hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd" |
|
) |
|
pipeline.set_adapters(["hyper-sd"], adapter_weights=[0.125]) |
|
|
|
|
|
url = "https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/assets/mushroom.jpg" |
|
image = load_image(url) # resize as needed. |
|
print(image.size) |
|
|
|
prompt = "turn the color of mushroom to gray" |
|
image = pipeline( |
|
control_image=image, |
|
prompt=prompt, |
|
guidance_scale=30., # change this as needed. |
|
num_inference_steps=8, # change this as needed. |
|
max_sequence_length=512, |
|
height=image.height, |
|
width=image.width, |
|
generator=torch.manual_seed(0) |
|
).images[0] |
|
image.save("edited_image.png") |
|
``` |
|
|
|
</details> |
|
<br> |
|
<details> |
|
<summary>Comparison</summary> |
|
|
|
<table align="center"> |
|
<tr> |
|
<th>50 steps</th> |
|
<th>8 steps</th> |
|
</tr> |
|
<tr> |
|
<td align="center"><img src="https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_car.jpg" alt="50 steps 1" width="150"></td> |
|
<td align="center"><img src="https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_8steps_car.jpg" alt="8 steps 1" width="150"></td> |
|
</tr> |
|
<tr> |
|
<td align="center"><img src="https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_norte_dam.jpg" alt="50 steps 2" width="150"></td> |
|
<td align="center"><img src="https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_8steps_norte_dam.jpg" alt="8 steps 2" width="150"></td> |
|
</tr> |
|
<tr> |
|
<td align="center"><img src="https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_mushroom.jpg" alt="50 steps 3" width="150"></td> |
|
<td align="center"><img src="https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_8steps_mushroom.jpg" alt="8 steps 3" width="150"></td> |
|
</tr> |
|
<tr> |
|
<td align="center"><img src="https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_green_creature.jpg" alt="50 steps 4" width="150"></td> |
|
<td align="center"><img src="https://huggingface.co./datasets/sayakpaul/sample-datasets/resolve/main/flux-edit-artifacts/edited_8steps_green_creature.jpg" alt="8 steps 4" width="150"></td> |
|
</tr> |
|
</table> |
|
|
|
|
|
</details> |
|
|
|
You can also choose to perform quantization if the memory requirements cannot be satisfied further w.r.t your hardware. Refer to the [Diffusers documentation](https://huggingface.co./docs/diffusers/main/en/quantization/overview) to learn more. |
|
|
|
`guidance_scale` also impacts the results: |
|
|
|
<table align="center"> |
|
<tr> |
|
<th>Prompt</th> |
|
<th>Collage (gs: 10)</th> |
|
<th>Collage (gs: 20)</th> |
|
<th>Collage (gs: 30)</th> |
|
<th>Collage (gs: 40)</th> |
|
</tr> |
|
<tr> |
|
<td align="center"> |
|
<em>Give this the look of a traditional Japanese woodblock print.</em> |
|
</td> |
|
<td align="center"><img src="https://huggingface.co./sayakpaul/FLUX.1-dev-edit-v0/resolve/main/images_0.png" alt="Edited Image gs 10"></td> |
|
<td align="center"><img src="https://huggingface.co./sayakpaul/FLUX.1-dev-edit-v0/resolve/main/images_1.png" alt="Edited Image gs 20"></td> |
|
<td align="center"><img src="https://huggingface.co./sayakpaul/FLUX.1-dev-edit-v0/resolve/main/images_2.png" alt="Edited Image gs 30"></td> |
|
<td align="center"><img src="https://huggingface.co./sayakpaul/FLUX.1-dev-edit-v0/resolve/main/images_3.png" alt="Edited Image gs 40"></td> |
|
</tr> |
|
<tr> |
|
<td align="center"> |
|
<em>transform the setting to a winter scene</em> |
|
</td> |
|
<td align="center"><img src="https://huggingface.co./sayakpaul/FLUX.1-dev-edit-v0/resolve/main/images_4.png" alt="Edited Image gs 10"></td> |
|
<td align="center"><img src="https://huggingface.co./sayakpaul/FLUX.1-dev-edit-v0/resolve/main/images_5.png" alt="Edited Image gs 20"></td> |
|
<td align="center"><img src="https://huggingface.co./sayakpaul/FLUX.1-dev-edit-v0/resolve/main/images_5.png" alt="Edited Image gs 30"></td> |
|
<td align="center"><img src="https://huggingface.co./sayakpaul/FLUX.1-dev-edit-v0/resolve/main/images_6.png" alt="Edited Image gs 40"></td> |
|
</tr> |
|
<tr> |
|
<td align="center"> |
|
<em>turn the color of mushroom to gray</em> |
|
</td> |
|
<td align="center"><img src="https://huggingface.co./sayakpaul/FLUX.1-dev-edit-v0/resolve/main/images_12.png" alt="Edited Image gs 10"></td> |
|
<td align="center"><img src="https://huggingface.co./sayakpaul/FLUX.1-dev-edit-v0/resolve/main/images_13.png" alt="Edited Image gs 20"></td> |
|
<td align="center"><img src="https://huggingface.co./sayakpaul/FLUX.1-dev-edit-v0/resolve/main/images_14.png" alt="Edited Image gs 30"></td> |
|
<td align="center"><img src="https://huggingface.co./sayakpaul/FLUX.1-dev-edit-v0/resolve/main/images_15.png" alt="Edited Image gs 40"></td> |
|
</tr> |
|
</table> |
|
|
|
|
|
### Limitations and bias |
|
|
|
Expect the model to perform underwhelmingly as we don't know the exact training details of Flux Control. |
|
|
|
## Training details |
|
|
|
Fine-tuning codebase is [here](https://github.com/sayakpaul/flux-image-editing). Training hyperparameters: |
|
|
|
* Per GPU batch size: 4 |
|
* Gradient accumulation steps: 4 |
|
* Guidance scale: 30 |
|
* BF16 mixed-precision |
|
* AdamW optimizer (8bit from `bitsandbytes`) |
|
* Constant learning rate of 5e-5 |
|
* Weight decay of 1e-6 |
|
* 20000 training steps |
|
|
|
|
|
Training was conducted using a node of 8xH100s. |
|
|
|
We used a simplified flow mechanism to perform the linear interpolation. In pseudo-code, that looks like: |
|
|
|
```py |
|
sigmas = torch.rand(batch_size) |
|
timesteps = (sigmas * noise_scheduler.config.num_train_timesteps).long() |
|
... |
|
|
|
noisy_model_input = (1.0 - sigmas) * pixel_latents + sigmas * noise |
|
``` |
|
|
|
where `pixel_latents` is computed from the source images and `noise` is drawn from a Gaussian distribution. For more details, [check out |
|
the repository](https://github.com/sayakpaul/flux-image-editing/blob/b041f62df8f959dc3b2f324d2bfdcdf3a6388598/train.py#L403). |