flan-t5-large-finetuned-prompt_generation

This model is a fine-tuned version of google/flan-t5-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Map: 0.1581
  • Ndcg@10: 0.4932

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Map Ndcg@10
No log 1.0 4 nan 0.1581 0.4932
No log 2.0 8 nan 0.1581 0.4932
No log 3.0 12 nan 0.1581 0.4932
No log 4.0 16 nan 0.1581 0.4932
No log 5.0 20 nan 0.1581 0.4932
No log 6.0 24 nan 0.1581 0.4932
No log 7.0 28 nan 0.1581 0.4932
No log 8.0 32 nan 0.1581 0.4932
No log 9.0 36 nan 0.1581 0.4932
No log 10.0 40 nan 0.1581 0.4932
No log 11.0 44 nan 0.1581 0.4932
No log 12.0 48 nan 0.1581 0.4932
No log 13.0 52 nan 0.1581 0.4932
No log 14.0 56 nan 0.1581 0.4932
No log 15.0 60 nan 0.1581 0.4932
No log 16.0 64 nan 0.1581 0.4932
No log 17.0 68 nan 0.1581 0.4932
No log 18.0 72 nan 0.1581 0.4932
No log 19.0 76 nan 0.1581 0.4932
No log 20.0 80 nan 0.1581 0.4932
No log 21.0 84 nan 0.1581 0.4932
No log 22.0 88 nan 0.1581 0.4932
No log 23.0 92 nan 0.1581 0.4932
No log 24.0 96 nan 0.1581 0.4932
No log 25.0 100 nan 0.1581 0.4932
No log 26.0 104 nan 0.1581 0.4932
No log 27.0 108 nan 0.1581 0.4932
No log 28.0 112 nan 0.1581 0.4932
No log 29.0 116 nan 0.1581 0.4932
No log 30.0 120 nan 0.1581 0.4932
No log 31.0 124 nan 0.1581 0.4932
No log 32.0 128 nan 0.1581 0.4932
No log 33.0 132 nan 0.1581 0.4932
No log 34.0 136 nan 0.1581 0.4932
No log 35.0 140 nan 0.1581 0.4932
No log 36.0 144 nan 0.1581 0.4932
No log 37.0 148 nan 0.1581 0.4932
No log 38.0 152 nan 0.1581 0.4932
No log 39.0 156 nan 0.1581 0.4932
No log 40.0 160 nan 0.1581 0.4932
No log 41.0 164 nan 0.1581 0.4932
No log 42.0 168 nan 0.1581 0.4932
No log 43.0 172 nan 0.1581 0.4932
No log 44.0 176 nan 0.1581 0.4932
No log 45.0 180 nan 0.1581 0.4932
No log 46.0 184 nan 0.1581 0.4932
No log 47.0 188 nan 0.1581 0.4932
No log 48.0 192 nan 0.1581 0.4932
No log 49.0 196 nan 0.1581 0.4932
No log 50.0 200 nan 0.1581 0.4932
No log 51.0 204 nan 0.1581 0.4932
No log 52.0 208 nan 0.1581 0.4932
No log 53.0 212 nan 0.1581 0.4932
No log 54.0 216 nan 0.1581 0.4932
No log 55.0 220 nan 0.1581 0.4932
No log 56.0 224 nan 0.1581 0.4932
No log 57.0 228 nan 0.1581 0.4932
No log 58.0 232 nan 0.1581 0.4932
No log 59.0 236 nan 0.1581 0.4932
No log 60.0 240 nan 0.1581 0.4932
No log 61.0 244 nan 0.1581 0.4932
No log 62.0 248 nan 0.1581 0.4932
No log 63.0 252 nan 0.1581 0.4932
No log 64.0 256 nan 0.1581 0.4932
No log 65.0 260 nan 0.1581 0.4932
No log 66.0 264 nan 0.1581 0.4932
No log 67.0 268 nan 0.1581 0.4932
No log 68.0 272 nan 0.1581 0.4932
No log 69.0 276 nan 0.1581 0.4932
No log 70.0 280 nan 0.1581 0.4932
No log 71.0 284 nan 0.1581 0.4932
No log 72.0 288 nan 0.1581 0.4932
No log 73.0 292 nan 0.1581 0.4932
No log 74.0 296 nan 0.1581 0.4932
No log 75.0 300 nan 0.1581 0.4932
No log 76.0 304 nan 0.1581 0.4932
No log 77.0 308 nan 0.1581 0.4932
No log 78.0 312 nan 0.1581 0.4932
No log 79.0 316 nan 0.1581 0.4932
No log 80.0 320 nan 0.1581 0.4932
No log 81.0 324 nan 0.1581 0.4932
No log 82.0 328 nan 0.1581 0.4932
No log 83.0 332 nan 0.1581 0.4932
No log 84.0 336 nan 0.1581 0.4932
No log 85.0 340 nan 0.1581 0.4932
No log 86.0 344 nan 0.1581 0.4932
No log 87.0 348 nan 0.1581 0.4932
No log 88.0 352 nan 0.1581 0.4932
No log 89.0 356 nan 0.1581 0.4932
No log 90.0 360 nan 0.1581 0.4932
No log 91.0 364 nan 0.1581 0.4932
No log 92.0 368 nan 0.1581 0.4932
No log 93.0 372 nan 0.1581 0.4932
No log 94.0 376 nan 0.1581 0.4932
No log 95.0 380 nan 0.1581 0.4932
No log 96.0 384 nan 0.1581 0.4932
No log 97.0 388 nan 0.1581 0.4932
No log 98.0 392 nan 0.1581 0.4932
No log 99.0 396 nan 0.1581 0.4932
No log 100.0 400 nan 0.1581 0.4932

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
25
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for satyanshu404/flan-t5-large-finetuned-prompt_generation

Finetuned
(106)
this model