Edit model card

Fine-tuning

Peft Config

  • peft config shown as below:
peft_config = LoraConfig(
    r=16,
    lora_alpha=32,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "lm_head"],
    bias="none",
    task_type="SEQ_CLS",
    modules_to_save=["scores"]
    )

Metric

F1-score, Precision, and Recall was shown as below during 1,000 steps with 32 batchsize:

image/png

Model Merge

Gakki-7B was build by Chat Vector

A recipe shows as below

Rakuten/RakutenAI-7B-instruct + (prometheus-eval/prometheus-7b-v2.0 - mistralai/Mistral-7B-Instruct-v0.2)

Source Code

import torch
from transformers import AutoModelForCausalLM


def build_chat_vector_model(
    base_model_name,
    inst_model_name,
    target_model_name,
    skip_layers,
    ):

    base_model = AutoModelForCausalLM.from_pretrained(
        base_model_name,
        torch_dtype=torch.bfloat16,
        device_map="cpu",
    )
    inst_model = AutoModelForCausalLM.from_pretrained(
        inst_model_name,
        torch_dtype=torch.bfloat16,
        device_map="cpu",
    )

    target_model = AutoModelForCausalLM.from_pretrained(
        target_model_name,
        torch_dtype=torch.bfloat16,
        device_map="cuda",
    )

    # 英語ベースモデル
    for k, v in base_model.state_dict().items():
        print(k, v.shape)

    # 日本語継続事前学習モデル
    for k, v in target_model.state_dict().items():
        print(k, v.shape)

    # 除外対象
    skip_layers = ["model.embed_tokens.weight", "lm_head.weight"]

    for k, v in target_model.state_dict().items():
        # layernormも除外
        if (k in skip_layers) or ("layernorm" in k):
            continue
        chat_vector = inst_model.state_dict()[k] - base_model.state_dict()[k]
        new_v = v + chat_vector.to(v.device)
        v.copy_(new_v)

    target_model.save_pretrained("./Gakki-7B")

    return


if __name__ == '__main__':

    base_model_name = "mistralai/Mistral-7B-Instruct-v0.2"
    inst_model_name = "prometheus-eval/prometheus-7b-v2.0"
    target_model_name = "Rakuten/RakutenAI-7B-instruct"

    skip_layers = ["model.embed_tokens.weight", "lm_head.weight"]

    build_chat_vector_model(
        base_model_name=base_model_name,
        inst_model_name=inst_model_name,
        target_model_name=target_model_name,
        skip_layers=skip_layers
    )
Downloads last month
17
Safetensors
Model size
7.37B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ryota39/Gakki-7B-reward-v0.1

Quantizations
1 model

Collection including ryota39/Gakki-7B-reward-v0.1