Edit model card

Model Card for Model ID

https://huggingface.co./rezacsedu/financial_sentiment_analysis_gpt2_model

Model Details

Model Description

This a fine-tuned GPT2 model on the https://huggingface.co./datasets/FinGPT/fingpt-sentiment-train dataset for the downstream financial sentiment analysis.

Model Sources

Uses

The model is already fine-tuned for downstream financial sentiment analysis tasks.

import torch

# Load your fine-tuned model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained("fine_tuned_finsetiment_model")
tokenizer = AutoTokenizer.from_pretrained("fine_tuned_finsetiment_model")

# Define the label mapping as provided
label_mapping_reverse = {
'0': 'Mildly positive',
'1': 'Mildly negative',
'2': 'Moderately negative',
'3': 'Moderately positive',
'4': 'Positive',
'5': 'Negative',
'6': 'Neutral',
'7': 'Strongly negative',
'8': 'Strongly positive'
}

def model_predict(text):
  # Tokenize the input text
  inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)

  # Get predictions from the model
  with torch.no_grad():
    logits = model(**inputs).logits

    # Convert to probabilities
    probabilities = torch.nn.functional.softmax(logits, dim=-1)

    # Create a list of tuples with label and probability
    label_prob_pairs = [(label_mapping_reverse[label_idx], prob.item()) 
    for label_idx, prob in enumerate(probabilities.squeeze())]

    # Sort the list by probability in descending order
    sorted_label_prob_pairs = sorted(label_prob_pairs, key=lambda pair: pair[1], reverse=True)

  # Return the sorted list of label-probability pairs
  return sorted_label_prob_pairs

# Example usage
text = "Intel Corporation (NASDAQ: INTC) has unveiled a remote verification platform called Project Amber"
predictions = model_predict(text)
for label, prob in predictions:
  print(f"{label}: {prob:.3f}")

Training Details

Training Data

from transformers import GPT2Tokenizer

dataset = load_dataset("FinGPT/fingpt-sentiment-train")

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token

def tokenize_function(examples):
   return tokenizer(examples["input"], padding="max_length", truncation=True)

tokenized_datasets = dataset.map(tokenize_function, batched=True)

from datasets import DatasetDict
import random
import string

def generate_random_id():
  return ''.join(random.choices(string.ascii_lowercase + string.digits, k=10))

unique_outputs = set(dataset['train']['output'])

#label_mapping = {'mildly positive': 0, 'positive': 1, 'strong positive':2, 'moderately positive': 3, 'negative': 4, 'neutral': 5}  # Add more mappings as needed
label_mapping = {label: index for index, label in enumerate(unique_outputs)}

def transform_dataset(dataset):
  dataset = dataset.rename_column('input', 'text')
  dataset = dataset.rename_column('output', 'label_text')

  dataset = dataset.remove_columns(['instruction'])

  dataset = dataset.add_column('id', [generate_random_id() for _ in range(dataset.num_rows)])
  dataset = dataset.add_column('label', [label_mapping[label_text] for label_text in dataset['label_text']])

  return dataset

transformed_dataset = DatasetDict({'train': transform_dataset(tokenized_datasets['train'])})
transformed_dataset['train'].set_format(type=None, columns=['id', 'text', 'label', 'label_text', 'input_ids', 'attention_mask'])

train_test_split = transformed_dataset['train'].train_test_split(test_size=0.3, seed=42)

tokenized_datasets['test'] = train_test_split['test']
tokenized_datasets['train'] = train_test_split['train']

small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(100))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(100))

Fine-tune Procedure

from transformers import GPT2ForSequenceClassification
from transformers import TrainingArguments, Trainer

model = GPT2ForSequenceClassification.from_pretrained("gpt2", num_labels=9)

training_args = TrainingArguments(
   output_dir="test_trainer",
   #evaluation_strategy="epoch",
   per_device_train_batch_size=1,  # Reduce batch size here
   per_device_eval_batch_size=1,    # Optionally, reduce for evaluation as well
   gradient_accumulation_steps=4
   )

trainer = Trainer(
   model=model,
   args=training_args,
   train_dataset=small_train_dataset,
   eval_dataset=small_eval_dataset,
   compute_metrics=compute_metrics,
)

trainer.train()
trainer.evaluate()
trainer.save_model("fine_tuned_finsetiment_model")

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

Evaluation

import evaluate

metric = evaluate.load("accuracy")

def compute_metrics(eval_pred):
   logits, labels = eval_pred
   predictions = np.argmax(logits, axis=-1)

   return metric.compute(predictions=predictions, references=labels)

Summary

Citation [optional]

BibTeX:

Model Card Contact

[email protected]

Downloads last month
10
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train rezacsedu/financial_sentiment_analysis_gpt2_model