Model Card of lmqg/mbart-large-cc25-frquad-qa
This model is fine-tuned version of facebook/mbart-large-cc25 for question answering task on the lmqg/qg_frquad (dataset_name: default) via lmqg
.
Overview
- Language model: facebook/mbart-large-cc25
- Language: fr
- Training data: lmqg/qg_frquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="fr", model="lmqg/mbart-large-cc25-frquad-qa")
# model prediction
answers = model.answer_q(list_question="En quelle année a-t-on trouvé trace d'un haut fourneau similaire?", list_context=" Cette technologie ne disparaît qu'au début du XXe siècle. On retrouve vers 1900 un haut fourneau similaire dans le Bulacan, aux Philippines. Plus tard encore, le « haut fourneau dans la cour » prôné par Mao Zedong pendant le Grand Bond en avant est de ce type. L'expérience n'est un échec technique que dans les régions où le savoir-faire n'existe pas, ou a disparu.")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-frquad-qa")
output = pipe("question: En quelle année a-t-on trouvé trace d'un haut fourneau similaire?, context: Cette technologie ne disparaît qu'au début du XXe siècle. On retrouve vers 1900 un haut fourneau similaire dans le Bulacan, aux Philippines. Plus tard encore, le « haut fourneau dans la cour » prôné par Mao Zedong pendant le Grand Bond en avant est de ce type. L'expérience n'est un échec technique que dans les régions où le savoir-faire n'existe pas, ou a disparu.")
Evaluation
- Metric (Question Answering): raw metric file
Score | Type | Dataset | |
---|---|---|---|
AnswerExactMatch | 39.34 | default | lmqg/qg_frquad |
AnswerF1Score | 60.48 | default | lmqg/qg_frquad |
BERTScore | 92.2 | default | lmqg/qg_frquad |
Bleu_1 | 37.27 | default | lmqg/qg_frquad |
Bleu_2 | 32.61 | default | lmqg/qg_frquad |
Bleu_3 | 29.23 | default | lmqg/qg_frquad |
Bleu_4 | 26.33 | default | lmqg/qg_frquad |
METEOR | 31.8 | default | lmqg/qg_frquad |
MoverScore | 77.16 | default | lmqg/qg_frquad |
ROUGE_L | 38.14 | default | lmqg/qg_frquad |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_frquad
- dataset_name: default
- input_types: ['paragraph_question']
- output_types: ['answer']
- prefix_types: None
- model: facebook/mbart-large-cc25
- max_length: 512
- max_length_output: 32
- epoch: 15
- batch: 32
- lr: 0.0002
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 2
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 104
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Evaluation results
- BLEU4 (Question Answering) on lmqg/qg_frquadself-reported26.330
- ROUGE-L (Question Answering) on lmqg/qg_frquadself-reported38.140
- METEOR (Question Answering) on lmqg/qg_frquadself-reported31.800
- BERTScore (Question Answering) on lmqg/qg_frquadself-reported92.200
- MoverScore (Question Answering) on lmqg/qg_frquadself-reported77.160
- AnswerF1Score (Question Answering) on lmqg/qg_frquadself-reported60.480
- AnswerExactMatch (Question Answering) on lmqg/qg_frquadself-reported39.340