See axolotl config
axolotl version: 0.4.1
base_model: Qwen/Qwen2.5-0.5B
bf16: auto
dataset_prepared_path: /training/data/prepared
datasets:
- conversation: llama3
path: RLHFlow/Mistral-PRM-Data
split: train
train_on_split: train
type: sharegpt
flash_attention: true
fp16: false
gradient_accumulation_steps: 4
gradient_checkpointing: true
hub_model_id: rawsh/MetaMath-Qwen2.5-0.5b-PRM
hub_strategy: every_save
learning_rate: 2.0e-06
load_in_4bit: false
load_in_8bit: false
logging_steps: 2
lr_scheduler: cosine
max_grad_norm: 1.0
micro_batch_size: 1
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: paged_adamw_32bit
output_dir: /training/prm
pad_to_sequence_len: true
push_to_hub: true
sample_packing: true
save_safetensors: true
save_strategy: epoch
save_total_limit: 4
sequence_len: 8192
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0
wandb_name: qwen2.5-0.5b-bs32_lr2e-6_prm
wandb_project: preference-models
warmup_ratio: 0.05
weight_decay: 0.0
MetaMath-Qwen2.5-0.5b-PRM
This model is a fine-tuned version of Qwen/Qwen2.5-0.5B on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 214
- num_epochs: 1
Training results
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 48
Model tree for rawsh/MetaMath-Qwen2.5-0.5b-PRM
Base model
Qwen/Qwen2.5-0.5B