You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

mt5-base-finetuned-novel-chinese-to-spanish

This model is a fine-tuned version of quickman/mt5-base-finetuned-chinese-to-spanish-finetuned-chinese-to-spanish on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3193
  • Score: 0.0000
  • Counts: [545, 246, 135, 80]
  • Totals: [777, 713, 649, 585]
  • Precisions: [70.14157014157014, 34.50210378681627, 20.801232665639446, 13.675213675213675]
  • Bp: 0.0000
  • Sys Len: 777
  • Ref Len: 17012
  • Bleu: 0.0000
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 40
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Score Counts Totals Precisions Bp Sys Len Ref Len Bleu Gen Len
2.7861 0.6 500 1.9548 0.0000 [465, 147, 51, 23] [754, 690, 626, 562] [61.6710875331565, 21.304347826086957, 8.146964856230031, 4.092526690391459] 0.0000 754 17012 0.0000 19.0
2.5103 1.19 1000 1.7626 0.0000 [491, 174, 62, 24] [770, 706, 642, 578] [63.76623376623377, 24.64589235127479, 9.657320872274143, 4.1522491349480966] 0.0000 770 17012 0.0000 19.0
2.3148 1.79 1500 1.6428 0.0000 [499, 181, 73, 35] [781, 717, 653, 589] [63.892445582586426, 25.24407252440725, 11.179173047473201, 5.942275042444821] 0.0000 781 17012 0.0000 19.0
2.17 2.39 2000 1.5580 0.0000 [524, 201, 90, 44] [784, 720, 656, 592] [66.83673469387755, 27.916666666666668, 13.71951219512195, 7.4324324324324325] 0.0000 784 17012 0.0000 19.0
2.0889 2.99 2500 1.5197 0.0000 [529, 214, 102, 55] [781, 717, 653, 589] [67.73367477592829, 29.846582984658298, 15.620214395099541, 9.33786078098472] 0.0000 781 17012 0.0000 19.0
2.009 3.58 3000 1.4945 0.0000 [527, 217, 103, 59] [789, 725, 661, 597] [66.7934093789607, 29.93103448275862, 15.582450832072617, 9.882747068676716] 0.0000 789 17012 0.0000 19.0
1.9494 4.18 3500 1.4647 0.0000 [518, 214, 105, 60] [774, 710, 646, 582] [66.9250645994832, 30.140845070422536, 16.25386996904025, 10.309278350515465] 0.0000 774 17012 0.0000 19.0
1.9289 4.78 4000 1.4282 0.0000 [539, 234, 116, 66] [781, 717, 653, 589] [69.01408450704226, 32.63598326359833, 17.76416539050536, 11.205432937181664] 0.0000 781 17012 0.0000 19.0
1.8661 5.38 4500 1.4049 0.0000 [520, 217, 117, 74] [763, 699, 635, 571] [68.15203145478375, 31.044349070100143, 18.4251968503937, 12.959719789842381] 0.0000 763 17012 0.0000 19.0
1.8417 5.97 5000 1.3815 0.0000 [536, 235, 119, 71] [774, 710, 646, 582] [69.25064599483204, 33.098591549295776, 18.42105263157895, 12.199312714776632] 0.0000 774 17012 0.0000 19.0
1.8094 6.57 5500 1.3651 0.0000 [528, 226, 117, 68] [765, 701, 637, 573] [69.01960784313725, 32.23965763195435, 18.367346938775512, 11.8673647469459] 0.0000 765 17012 0.0000 19.0
1.811 7.17 6000 1.3629 0.0000 [526, 225, 119, 69] [768, 704, 640, 576] [68.48958333333333, 31.960227272727273, 18.59375, 11.979166666666666] 0.0000 768 17012 0.0000 19.0
1.7635 7.77 6500 1.3451 0.0000 [529, 230, 124, 72] [765, 701, 637, 573] [69.15032679738562, 32.810271041369475, 19.46624803767661, 12.565445026178011] 0.0000 765 17012 0.0000 19.0
1.7782 8.36 7000 1.3376 0.0000 [530, 240, 132, 79] [771, 707, 643, 579] [68.74189364461738, 33.946251768033946, 20.52877138413686, 13.644214162348877] 0.0000 771 17012 0.0000 19.0
1.7528 8.96 7500 1.3305 0.0000 [543, 242, 129, 78] [779, 715, 651, 587] [69.70474967907573, 33.84615384615385, 19.81566820276498, 13.287904599659285] 0.0000 779 17012 0.0000 19.0
1.7365 9.56 8000 1.3273 0.0000 [532, 232, 123, 73] [770, 706, 642, 578] [69.0909090909091, 32.861189801699716, 19.1588785046729, 12.629757785467127] 0.0000 770 17012 0.0000 19.0
1.7212 10.16 8500 1.3247 0.0000 [544, 245, 136, 80] [777, 713, 649, 585] [70.01287001287001, 34.36185133239832, 20.955315870570107, 13.675213675213675] 0.0000 777 17012 0.0000 19.0
1.7027 10.75 9000 1.3229 0.0000 [548, 244, 131, 77] [776, 712, 648, 584] [70.61855670103093, 34.26966292134831, 20.21604938271605, 13.184931506849315] 0.0000 776 17012 0.0000 19.0
1.702 11.35 9500 1.3198 0.0000 [544, 247, 137, 82] [774, 710, 646, 582] [70.2842377260982, 34.7887323943662, 21.207430340557277, 14.0893470790378] 0.0000 774 17012 0.0000 19.0
1.7258 11.95 10000 1.3193 0.0000 [545, 246, 135, 80] [777, 713, 649, 585] [70.14157014157014, 34.50210378681627, 20.801232665639446, 13.675213675213675] 0.0000 777 17012 0.0000 19.0

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.