Edit model card

distilbert-finetuned-gesture-prediction-9-classes

This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the validation set:

  • Loss: 0.6479
  • Accuracy: 0.8214
  • Precision: 0.8230
  • Recall: 0.8214
  • F1: 0.8172

It achieves the following results on the test set:

  • Loss: 0.6475
  • Accuracy: 0.8144
  • Precision: 0.8144
  • Recall: 0.8144
  • F1: 0.8095

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

The model has been trained on the qfrodicio/gesture-prediction-9-classes dataset

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • weight_decay: 0.01
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.6636 1.0 87 0.9715 0.7270 0.6909 0.7270 0.6897
0.7503 2.0 174 0.7360 0.7987 0.7874 0.7987 0.7879
0.5283 3.0 261 0.6831 0.8056 0.8046 0.8056 0.8005
0.3853 4.0 348 0.6479 0.8214 0.8230 0.8214 0.8172
0.28 5.0 435 0.6570 0.8314 0.8348 0.8314 0.8289
0.2163 6.0 522 0.6887 0.8322 0.8346 0.8322 0.8298
0.158 7.0 609 0.7078 0.8336 0.8362 0.8336 0.8311
0.1308 8.0 696 0.7197 0.8415 0.8444 0.8415 0.8394
0.1061 9.0 783 0.7362 0.8419 0.8441 0.8419 0.8394
0.0947 10.0 870 0.7412 0.8435 0.8458 0.8435 0.8410

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train qfrodicio/distilbert-finetuned-gesture-prediction-9-classes