POET: A French Extended Part-of-Speech Tagger
- Corpora: ANTILLES
- Embeddings: FastText
- Sequence Labelling: Bi-LSTM-CRF
- Number of Epochs: 115
People Involved
- LABRAK Yanis (1)
- DUFOUR Richard (2)
Affiliations
- LIA, NLP team, Avignon University, Avignon, France.
- LS2N, TALN team, Nantes University, Nantes, France.
Demo: How to use in Flair
Requires Flair: pip install flair
from flair.data import Sentence
from flair.models import SequenceTagger
# Load the model
model = SequenceTagger.load("qanastek/pos-french")
sentence = Sentence("George Washington est allé à Washington")
# Predict tags
model.predict(sentence)
# Print predicted pos tags
print(sentence.to_tagged_string())
Output:
Training data
ANTILLES
is a part-of-speech tagging corpora based on UD_French-GSD which was originally created in 2015 and is based on the universal dependency treebank v2.0.
Originally, the corpora consists of 400,399 words (16,341 sentences) and had 17 different classes. Now, after applying our tags augmentation we obtain 60 different classes which add linguistic and semantic information such as the gender, number, mood, person, tense or verb form given in the different CoNLL-03 fields from the original corpora.
We based our tags on the level of details given by the LIA_TAGG statistical POS tagger written by Frédéric Béchet in 2001.
The corpora used for this model is available on Github at the CoNLL-U format.
Training data are fed to the model as free language and doesn't pass a normalization phase. Thus, it's made the model case and punctuation sensitive.
Original Tags
PRON VERB SCONJ ADP CCONJ DET NOUN ADJ AUX ADV PUNCT PROPN NUM SYM PART X INTJ
New additional POS tags
Abbreviation | Description | Examples |
---|---|---|
PREP | Preposition | de |
AUX | Auxiliary Verb | est |
ADV | Adverb | toujours |
COSUB | Subordinating conjunction | que |
COCO | Coordinating Conjunction | et |
PART | Demonstrative particle | -t |
PRON | Pronoun | qui ce quoi |
PDEMMS | Demonstrative Pronoun - Singular Masculine | ce |
PDEMMP | Demonstrative Pronoun - Plural Masculine | ceux |
PDEMFS | Demonstrative Pronoun - Singular Feminine | cette |
PDEMFP | Demonstrative Pronoun - Plural Feminine | celles |
PINDMS | Indefinite Pronoun - Singular Masculine | tout |
PINDMP | Indefinite Pronoun - Plural Masculine | autres |
PINDFS | Indefinite Pronoun - Singular Feminine | chacune |
PINDFP | Indefinite Pronoun - Plural Feminine | certaines |
PROPN | Proper noun | Houston |
XFAMIL | Last name | Levy |
NUM | Numerical Adjective | trentaine vingtaine |
DINTMS | Masculine Numerical Adjective | un |
DINTFS | Feminine Numerical Adjective | une |
PPOBJMS | Pronoun complements of objects - Singular Masculine | le lui |
PPOBJMP | Pronoun complements of objects - Plural Masculine | eux y |
PPOBJFS | Pronoun complements of objects - Singular Feminine | moi la |
PPOBJFP | Pronoun complements of objects - Plural Feminine | en y |
PPER1S | Personal Pronoun First-Person - Singular | je |
PPER2S | Personal Pronoun Second-Person - Singular | tu |
PPER3MS | Personal Pronoun Third-Person - Singular Masculine | il |
PPER3MP | Personal Pronoun Third-Person - Plural Masculine | ils |
PPER3FS | Personal Pronoun Third-Person - Singular Feminine | elle |
PPER3FP | Personal Pronoun Third-Person - Plural Feminine | elles |
PREFS | Reflexive Pronoun First-Person - Singular | me m' |
PREF | Reflexive Pronoun Third-Person - Singular | se s' |
PREFP | Reflexive Pronoun First / Second-Person - Plural | nous vous |
VERB | Verb | obtient |
VPPMS | Past Participle - Singular Masculine | formulé |
VPPMP | Past Participle - Plural Masculine | classés |
VPPFS | Past Participle - Singular Feminine | appelée |
VPPFP | Past Participle - Plural Feminine | sanctionnées |
DET | Determinant | les l' |
DETMS | Determinant - Singular Masculine | les |
DETFS | Determinant - Singular Feminine | la |
ADJ | Adjective | capable sérieux |
ADJMS | Adjective - Singular Masculine | grand important |
ADJMP | Adjective - Plural Masculine | grands petits |
ADJFS | Adjective - Singular Feminine | française petite |
ADJFP | Adjective - Plural Feminine | légères petites |
NOUN | Noun | temps |
NMS | Noun - Singular Masculine | drapeau |
NMP | Noun - Plural Masculine | journalistes |
NFS | Noun - Singular Feminine | tête |
NFP | Noun - Plural Feminine | ondes |
PREL | Relative Pronoun | qui dont |
PRELMS | Relative Pronoun - Singular Masculine | lequel |
PRELMP | Relative Pronoun - Plural Masculine | lesquels |
PRELFS | Relative Pronoun - Singular Feminine | laquelle |
PRELFP | Relative Pronoun - Plural Feminine | lesquelles |
INTJ | Interjection | merci bref |
CHIF | Numbers | 1979 10 |
SYM | Symbol | € % |
YPFOR | Endpoint | . |
PUNCT | Ponctuation | : , |
MOTINC | Unknown words | Technology Lady |
X | Typos & others | sfeir 3D statu |
Evaluation results
The test corpora used for this evaluation is available on Github.
Results:
- F-score (micro): 0.952
- F-score (macro): 0.8644
- Accuracy (incl. no class): 0.952
By class:
precision recall f1-score support
PPER1S 0.9767 1.0000 0.9882 42
VERB 0.9823 0.9537 0.9678 583
COSUB 0.9344 0.8906 0.9120 128
PUNCT 0.9878 0.9688 0.9782 833
PREP 0.9767 0.9879 0.9822 1483
PDEMMS 0.9583 0.9200 0.9388 75
COCO 0.9839 1.0000 0.9919 245
DET 0.9679 0.9814 0.9746 645
NMP 0.9521 0.9115 0.9313 305
ADJMP 0.8352 0.9268 0.8786 82
PREL 0.9324 0.9857 0.9583 70
PREFP 0.9767 0.9545 0.9655 44
AUX 0.9537 0.9859 0.9695 355
ADV 0.9440 0.9365 0.9402 504
VPPMP 0.8667 1.0000 0.9286 26
DINTMS 0.9919 1.0000 0.9959 122
ADJMS 0.9020 0.9057 0.9039 244
NMS 0.9226 0.9336 0.9281 753
NFS 0.9347 0.9714 0.9527 560
YPFOR 0.9806 1.0000 0.9902 353
PINDMS 1.0000 0.9091 0.9524 44
NOUN 0.8400 0.5385 0.6562 39
PROPN 0.8605 0.8278 0.8439 395
DETMS 0.9972 0.9972 0.9972 362
PPER3MS 0.9341 0.9770 0.9551 87
VPPMS 0.8994 0.9682 0.9325 157
DETFS 1.0000 1.0000 1.0000 240
ADJFS 0.9266 0.9011 0.9136 182
ADJFP 0.9726 0.9342 0.9530 76
NFP 0.9463 0.9749 0.9604 199
VPPFS 0.8000 0.9000 0.8471 40
CHIF 0.9543 0.9414 0.9478 222
XFAMIL 0.9346 0.8696 0.9009 115
PPER3MP 0.9474 0.9000 0.9231 20
PPOBJMS 0.8800 0.9362 0.9072 47
PREF 0.8889 0.9231 0.9057 52
PPOBJMP 1.0000 0.6000 0.7500 10
SYM 0.9706 0.8684 0.9167 38
DINTFS 0.9683 1.0000 0.9839 61
PDEMFS 1.0000 0.8966 0.9455 29
PPER3FS 1.0000 0.9444 0.9714 18
VPPFP 0.9500 1.0000 0.9744 19
PRON 0.9200 0.7419 0.8214 31
PPOBJFS 0.8333 0.8333 0.8333 6
PART 0.8000 1.0000 0.8889 4
PPER3FP 1.0000 1.0000 1.0000 2
MOTINC 0.3571 0.3333 0.3448 15
PDEMMP 1.0000 0.6667 0.8000 3
INTJ 0.4000 0.6667 0.5000 6
PREFS 1.0000 0.5000 0.6667 10
ADJ 0.7917 0.8636 0.8261 22
PINDMP 0.0000 0.0000 0.0000 1
PINDFS 1.0000 1.0000 1.0000 1
NUM 1.0000 0.3333 0.5000 3
PPER2S 1.0000 1.0000 1.0000 2
PPOBJFP 1.0000 0.5000 0.6667 2
PDEMFP 1.0000 0.6667 0.8000 3
X 0.0000 0.0000 0.0000 1
PRELMS 1.0000 1.0000 1.0000 2
PINDFP 1.0000 1.0000 1.0000 1
accuracy 0.9520 10019
macro avg 0.8956 0.8521 0.8644 10019
weighted avg 0.9524 0.9520 0.9515 10019
BibTeX Citations
Please cite the following paper when using this model.
ANTILLES corpus and POET taggers:
@inproceedings{labrak:hal-03696042,
TITLE = {{ANTILLES: An Open French Linguistically Enriched Part-of-Speech Corpus}},
AUTHOR = {Labrak, Yanis and Dufour, Richard},
URL = {https://hal.archives-ouvertes.fr/hal-03696042},
BOOKTITLE = {{25th International Conference on Text, Speech and Dialogue (TSD)}},
ADDRESS = {Brno, Czech Republic},
PUBLISHER = {{Springer}},
YEAR = {2022},
MONTH = Sep,
KEYWORDS = {Part-of-speech corpus ; POS tagging ; Open tools ; Word embeddings ; Bi-LSTM ; CRF ; Transformers},
PDF = {https://hal.archives-ouvertes.fr/hal-03696042/file/ANTILLES_A_freNch_linguisTIcaLLy_Enriched_part_of_Speech_corpus.pdf},
HAL_ID = {hal-03696042},
HAL_VERSION = {v1},
}
UD_French-GSD corpora:
@misc{
universaldependencies,
title={UniversalDependencies/UD_French-GSD},
url={https://github.com/UniversalDependencies/UD_French-GSD}, journal={GitHub},
author={UniversalDependencies}
}
LIA TAGG:
@techreport{LIA_TAGG,
author = {Frédéric Béchet},
title = {LIA_TAGG: a statistical POS tagger + syntactic bracketer},
institution = {Aix-Marseille University & CNRS},
year = {2001}
}
Flair Embeddings:
@inproceedings{akbik2018coling,
title={Contextual String Embeddings for Sequence Labeling},
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
pages = {1638--1649},
year = {2018}
}
Acknowledgment
This work was financially supported by Zenidoc
- Downloads last month
- 2,466