Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
#9
by
autoevaluator
HF staff
- opened
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
tags:
|
3 |
- summarization
|
4 |
- summary
|
5 |
- booksum
|
6 |
- long-document
|
7 |
- long-form
|
8 |
-
license:
|
9 |
-
- apache-2.0
|
10 |
-
- bsd-3-clause
|
11 |
datasets:
|
12 |
- kmfoda/booksum
|
13 |
- big_patent
|
@@ -27,39 +27,38 @@ widget:
|
|
27 |
deviation of the average recurrence interval, the more specific could be the long
|
28 |
term prediction of a future mainshock.
|
29 |
example_title: earthquakes
|
30 |
-
- text:
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
\ this function space (Section 5)."
|
63 |
example_title: scientific paper
|
64 |
- text: 'Is a else or outside the cob and tree written being of early client rope
|
65 |
and you have is for good reasons. On to the ocean in Orange for time. By''s the
|
@@ -111,68 +110,82 @@ widget:
|
|
111 |
the point of you of your model. This hidden data is complete by unseen. In other
|
112 |
words, we solve our problem of validation.'
|
113 |
example_title: transcribed audio - lecture
|
114 |
-
- text:
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
example_title: bigbird blog intro
|
159 |
-
- text:
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
176 |
example_title: Richard & Mortimer
|
177 |
parameters:
|
178 |
max_length: 64
|
@@ -195,30 +208,36 @@ model-index:
|
|
195 |
config: kmfoda--booksum
|
196 |
split: test
|
197 |
metrics:
|
198 |
-
-
|
199 |
-
type: rouge
|
200 |
value: 23.1439
|
|
|
201 |
verified: true
|
202 |
-
|
203 |
-
|
204 |
value: 3.2393
|
|
|
205 |
verified: true
|
206 |
-
|
207 |
-
|
208 |
value: 12.7038
|
|
|
209 |
verified: true
|
210 |
-
|
211 |
-
|
212 |
value: 19.8101
|
|
|
213 |
verified: true
|
214 |
-
|
215 |
-
|
216 |
value: 2.766307830810547
|
|
|
217 |
verified: true
|
218 |
-
|
219 |
-
|
220 |
value: 63.4493
|
|
|
221 |
verified: true
|
|
|
222 |
- task:
|
223 |
type: summarization
|
224 |
name: Summarization
|
@@ -228,30 +247,36 @@ model-index:
|
|
228 |
config: samsum
|
229 |
split: test
|
230 |
metrics:
|
231 |
-
-
|
232 |
-
type: rouge
|
233 |
value: 26.8026
|
|
|
234 |
verified: true
|
235 |
-
|
236 |
-
|
237 |
value: 6.0656
|
|
|
238 |
verified: true
|
239 |
-
|
240 |
-
|
241 |
value: 20.0098
|
|
|
242 |
verified: true
|
243 |
-
|
244 |
-
|
245 |
value: 21.9115
|
|
|
246 |
verified: true
|
247 |
-
|
248 |
-
|
249 |
value: 2.317471981048584
|
|
|
250 |
verified: true
|
251 |
-
|
252 |
-
|
253 |
value: 19.1111
|
|
|
254 |
verified: true
|
|
|
255 |
- task:
|
256 |
type: summarization
|
257 |
name: Summarization
|
@@ -261,30 +286,36 @@ model-index:
|
|
261 |
config: default
|
262 |
split: test
|
263 |
metrics:
|
264 |
-
-
|
265 |
-
type: rouge
|
266 |
value: 25.2061
|
|
|
267 |
verified: true
|
268 |
-
|
269 |
-
|
270 |
value: 4.7048
|
|
|
271 |
verified: true
|
272 |
-
|
273 |
-
|
274 |
value: 17.8593
|
|
|
275 |
verified: true
|
276 |
-
|
277 |
-
|
278 |
value: 18.0798
|
|
|
279 |
verified: true
|
280 |
-
|
281 |
-
|
282 |
value: 3.003053665161133
|
|
|
283 |
verified: true
|
284 |
-
|
285 |
-
|
286 |
value: 27.4815
|
|
|
287 |
verified: true
|
|
|
288 |
- task:
|
289 |
type: summarization
|
290 |
name: Summarization
|
@@ -294,30 +325,36 @@ model-index:
|
|
294 |
config: 3.0.0
|
295 |
split: test
|
296 |
metrics:
|
297 |
-
-
|
298 |
-
type: rouge
|
299 |
value: 27.5692
|
|
|
300 |
verified: true
|
301 |
-
|
302 |
-
|
303 |
value: 6.1264
|
|
|
304 |
verified: true
|
305 |
-
|
306 |
-
|
307 |
value: 17.1127
|
|
|
308 |
verified: true
|
309 |
-
|
310 |
-
|
311 |
value: 23.0066
|
|
|
312 |
verified: true
|
313 |
-
|
314 |
-
|
315 |
value: 2.218526601791382
|
|
|
316 |
verified: true
|
317 |
-
|
318 |
-
|
319 |
value: 39.1952
|
|
|
320 |
verified: true
|
|
|
321 |
- task:
|
322 |
type: summarization
|
323 |
name: Summarization
|
@@ -327,30 +364,36 @@ model-index:
|
|
327 |
config: default
|
328 |
split: test
|
329 |
metrics:
|
330 |
-
-
|
331 |
-
type: rouge
|
332 |
value: 28.0632
|
|
|
333 |
verified: true
|
334 |
-
|
335 |
-
|
336 |
value: 9.8996
|
|
|
337 |
verified: true
|
338 |
-
|
339 |
-
|
340 |
value: 18.25
|
|
|
341 |
verified: true
|
342 |
-
|
343 |
-
|
344 |
value: 21.9053
|
|
|
345 |
verified: true
|
346 |
-
|
347 |
-
|
348 |
value: 2.032966375350952
|
|
|
349 |
verified: true
|
350 |
-
|
351 |
-
|
352 |
value: 48.5987
|
|
|
353 |
verified: true
|
|
|
354 |
- task:
|
355 |
type: summarization
|
356 |
name: Summarization
|
@@ -360,30 +403,36 @@ model-index:
|
|
360 |
config: y
|
361 |
split: test
|
362 |
metrics:
|
363 |
-
-
|
364 |
-
type: rouge
|
365 |
value: 34.7848
|
|
|
366 |
verified: true
|
367 |
-
|
368 |
-
|
369 |
value: 9.7549
|
|
|
370 |
verified: true
|
371 |
-
|
372 |
-
|
373 |
value: 22.228
|
|
|
374 |
verified: true
|
375 |
-
|
376 |
-
|
377 |
value: 28.0389
|
|
|
378 |
verified: true
|
379 |
-
|
380 |
-
|
381 |
value: 1.7787292003631592
|
|
|
382 |
verified: true
|
383 |
-
|
384 |
-
|
385 |
value: 71.6372
|
|
|
386 |
verified: true
|
|
|
387 |
- task:
|
388 |
type: summarization
|
389 |
name: Summarization
|
@@ -393,30 +442,36 @@ model-index:
|
|
393 |
config: plain_text
|
394 |
split: validation
|
395 |
metrics:
|
396 |
-
-
|
397 |
-
type: rouge
|
398 |
value: 23.5925
|
|
|
399 |
verified: true
|
400 |
-
|
401 |
-
|
402 |
value: 5.6762
|
|
|
403 |
verified: true
|
404 |
-
|
405 |
-
|
406 |
value: 13.8108
|
|
|
407 |
verified: true
|
408 |
-
|
409 |
-
|
410 |
value: 20.2437
|
|
|
411 |
verified: true
|
412 |
-
|
413 |
-
|
414 |
value: 2.6377077102661133
|
|
|
415 |
verified: true
|
416 |
-
|
417 |
-
|
418 |
value: 64.1807
|
|
|
419 |
verified: true
|
|
|
420 |
- task:
|
421 |
type: summarization
|
422 |
name: Summarization
|
@@ -426,30 +481,36 @@ model-index:
|
|
426 |
config: plain_text
|
427 |
split: test
|
428 |
metrics:
|
429 |
-
-
|
430 |
-
type: rouge
|
431 |
value: 23.7438
|
|
|
432 |
verified: true
|
433 |
-
|
434 |
-
|
435 |
value: 5.501
|
|
|
436 |
verified: true
|
437 |
-
|
438 |
-
|
439 |
value: 13.8132
|
|
|
440 |
verified: true
|
441 |
-
|
442 |
-
|
443 |
value: 20.4615
|
|
|
444 |
verified: true
|
445 |
-
|
446 |
-
|
447 |
value: 2.6383883953094482
|
|
|
448 |
verified: true
|
449 |
-
|
450 |
-
|
451 |
value: 64.9085
|
|
|
452 |
verified: true
|
|
|
453 |
---
|
454 |
|
455 |
# README - long-t5-tglobal-base-16384-booksum-V11-big_patent-V2
|
|
|
1 |
---
|
2 |
+
license:
|
3 |
+
- apache-2.0
|
4 |
+
- bsd-3-clause
|
5 |
tags:
|
6 |
- summarization
|
7 |
- summary
|
8 |
- booksum
|
9 |
- long-document
|
10 |
- long-form
|
|
|
|
|
|
|
11 |
datasets:
|
12 |
- kmfoda/booksum
|
13 |
- big_patent
|
|
|
27 |
deviation of the average recurrence interval, the more specific could be the long
|
28 |
term prediction of a future mainshock.
|
29 |
example_title: earthquakes
|
30 |
+
- text: ' A typical feed-forward neural field algorithm. Spatiotemporal coordinates
|
31 |
+
are fed into a neural network that predicts values in the reconstructed domain.
|
32 |
+
Then, this domain is mapped to the sensor domain where sensor measurements are
|
33 |
+
available as supervision. Class and Section Problems Addressed Generalization
|
34 |
+
(Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid
|
35 |
+
Representations (Section 3) Computation & memory efficiency, representation capacity,
|
36 |
+
editability: Forward Maps (Section 4) Inverse problems Network Architecture (Section
|
37 |
+
5) Spectral bias, integration & derivatives. Manipulating Neural Fields (Section
|
38 |
+
6) Edit ability, constraints, regularization. Table 2: The five classes of techniques
|
39 |
+
in the neural field toolbox each addresses problems that arise in learning, inference,
|
40 |
+
and control. (Section 3). We can supervise reconstruction via differentiable forward
|
41 |
+
maps that transform Or project our domain (e.g, 3D reconstruction via 2D images;
|
42 |
+
Section 4) With appropriate network architecture choices, we can overcome neural
|
43 |
+
network spectral biases (blurriness) and efficiently compute derivatives and integrals
|
44 |
+
(Section 5). Finally, we can manipulate neural fields to add constraints and regularizations,
|
45 |
+
and to achieve editable representations (Section 6). Collectively, these classes
|
46 |
+
constitute a ''toolbox'' of techniques to help solve problems with neural fields
|
47 |
+
There are three components in a conditional neural field: (1) An encoder or inference
|
48 |
+
function € that outputs the conditioning latent variable 2 given an observation
|
49 |
+
0 E(0) =2. 2 is typically a low-dimensional vector, and is often referred to aS
|
50 |
+
a latent code Or feature code_ (2) A mapping function 4 between Z and neural field
|
51 |
+
parameters O: Y(z) = O; (3) The neural field itself $. The encoder € finds the
|
52 |
+
most probable z given the observations O: argmaxz P(2/0). The decoder maximizes
|
53 |
+
the inverse conditional probability to find the most probable 0 given Z: arg-
|
54 |
+
max P(Olz). We discuss different encoding schemes with different optimality guarantees
|
55 |
+
(Section 2.1.1), both global and local conditioning (Section 2.1.2), and different
|
56 |
+
mapping functions Y (Section 2.1.3) 2. Generalization Suppose we wish to estimate
|
57 |
+
a plausible 3D surface shape given a partial or noisy point cloud. We need a suitable
|
58 |
+
prior over the sur- face in its reconstruction domain to generalize to the partial
|
59 |
+
observations. A neural network expresses a prior via the function space of its
|
60 |
+
architecture and parameters 0, and generalization is influenced by the inductive
|
61 |
+
bias of this function space (Section 5).'
|
|
|
62 |
example_title: scientific paper
|
63 |
- text: 'Is a else or outside the cob and tree written being of early client rope
|
64 |
and you have is for good reasons. On to the ocean in Orange for time. By''s the
|
|
|
110 |
the point of you of your model. This hidden data is complete by unseen. In other
|
111 |
words, we solve our problem of validation.'
|
112 |
example_title: transcribed audio - lecture
|
113 |
+
- text: 'Transformer-based models have shown to be very useful for many NLP tasks.
|
114 |
+
However, a major limitation of transformers-based models is its O(n^2)O(n 2) time
|
115 |
+
& memory complexity (where nn is sequence length). Hence, it''s computationally
|
116 |
+
very expensive to apply transformer-based models on long sequences n > 512n>512.
|
117 |
+
Several recent papers, e.g. Longformer, Performer, Reformer, Clustered attention
|
118 |
+
try to remedy this problem by approximating the full attention matrix. You can
|
119 |
+
checkout 🤗''s recent blog post in case you are unfamiliar with these models.
|
120 |
+
|
121 |
+
BigBird (introduced in paper) is one of such recent models to address this issue.
|
122 |
+
BigBird relies on block sparse attention instead of normal attention (i.e. BERT''s
|
123 |
+
attention) and can handle sequences up to a length of 4096 at a much lower computational
|
124 |
+
cost compared to BERT. It has achieved SOTA on various tasks involving very long
|
125 |
+
sequences such as long documents summarization, question-answering with long contexts.
|
126 |
+
|
127 |
+
BigBird RoBERTa-like model is now available in 🤗Transformers. The goal of this
|
128 |
+
post is to give the reader an in-depth understanding of big bird implementation
|
129 |
+
& ease one''s life in using BigBird with 🤗Transformers. But, before going into
|
130 |
+
more depth, it is important to remember that the BigBird''s attention is an approximation
|
131 |
+
of BERT''s full attention and therefore does not strive to be better than BERT''s
|
132 |
+
full attention, but rather to be more efficient. It simply allows to apply transformer-based
|
133 |
+
models to much longer sequences since BERT''s quadratic memory requirement quickly
|
134 |
+
becomes unbearable. Simply put, if we would have ∞ compute & ∞ time, BERT''s attention
|
135 |
+
would be preferred over block sparse attention (which we are going to discuss
|
136 |
+
in this post).
|
137 |
+
|
138 |
+
If you wonder why we need more compute when working with longer sequences, this
|
139 |
+
blog post is just right for you!
|
140 |
+
|
141 |
+
Some of the main questions one might have when working with standard BERT-like
|
142 |
+
attention include:
|
143 |
+
|
144 |
+
Do all tokens really have to attend to all other tokens? Why not compute attention
|
145 |
+
only over important tokens? How to decide what tokens are important? How to attend
|
146 |
+
to just a few tokens in a very efficient way? In this blog post, we will try to
|
147 |
+
answer those questions.
|
148 |
+
|
149 |
+
What tokens should be attended to? We will give a practical example of how attention
|
150 |
+
works by considering the sentence ''BigBird is now available in HuggingFace for
|
151 |
+
extractive question answering''. In BERT-like attention, every word would simply
|
152 |
+
attend to all other tokens.
|
153 |
+
|
154 |
+
Let''s think about a sensible choice of key tokens that a queried token actually
|
155 |
+
only should attend to by writing some pseudo-code. Will will assume that the token
|
156 |
+
available is queried and build a sensible list of key tokens to attend to.
|
157 |
+
|
158 |
+
>>> # let''s consider following sentence as an example >>> example = [''BigBird'',
|
159 |
+
''is'', ''now'', ''available'', ''in'', ''HuggingFace'', ''for'', ''extractive'',
|
160 |
+
''question'', ''answering'']
|
161 |
+
|
162 |
+
>>> # further let''s assume, we''re trying to understand the representation of
|
163 |
+
''available'' i.e. >>> query_token = ''available'' >>> # We will initialize an
|
164 |
+
empty `set` and fill up the tokens of our interest as we proceed in this section.
|
165 |
+
>>> key_tokens = [] # => currently ''available'' token doesn''t have anything
|
166 |
+
to attend Nearby tokens should be important because, in a sentence (sequence of
|
167 |
+
words), the current word is highly dependent on neighboring past & future tokens.
|
168 |
+
This intuition is the idea behind the concept of sliding attention.'
|
169 |
example_title: bigbird blog intro
|
170 |
+
- text: 'To be fair, you have to have a very high IQ to understand Rick and Morty.
|
171 |
+
The humour is extremely subtle, and without a solid grasp of theoretical physics
|
172 |
+
most of the jokes will go over a typical viewer''s head. There''s also Rick''s
|
173 |
+
nihilistic outlook, which is deftly woven into his characterisation- his personal
|
174 |
+
philosophy draws heavily from Narodnaya Volya literature, for instance. The fans
|
175 |
+
understand this stuff; they have the intellectual capacity to truly appreciate
|
176 |
+
the depths of these jokes, to realise that they''re not just funny- they say something
|
177 |
+
deep about LIFE. As a consequence people who dislike Rick & Morty truly ARE idiots-
|
178 |
+
of course they wouldn''t appreciate, for instance, the humour in Rick''s existential
|
179 |
+
catchphrase ''Wubba Lubba Dub Dub,'' which itself is a cryptic reference to Turgenev''s
|
180 |
+
Russian epic Fathers and Sons. I''m smirking right now just imagining one of those
|
181 |
+
addlepated simpletons scratching their heads in confusion as Dan Harmon''s genius
|
182 |
+
wit unfolds itself on their television screens. What fools.. how I pity them.
|
183 |
+
😂
|
184 |
+
|
185 |
+
And yes, by the way, i DO have a Rick & Morty tattoo. And no, you cannot see it.
|
186 |
+
It''s for the ladies'' eyes only- and even then they have to demonstrate that
|
187 |
+
they''re within 5 IQ points of my own (preferably lower) beforehand. Nothin personnel
|
188 |
+
kid 😎'
|
189 |
example_title: Richard & Mortimer
|
190 |
parameters:
|
191 |
max_length: 64
|
|
|
208 |
config: kmfoda--booksum
|
209 |
split: test
|
210 |
metrics:
|
211 |
+
- type: rouge
|
|
|
212 |
value: 23.1439
|
213 |
+
name: ROUGE-1
|
214 |
verified: true
|
215 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmQzMDk0MDJlZTJkN2IzODg3NDJhYmY4MzJmOTU4N2FjMDBjODg5NzJlMGFhNDQ2YTFhMzI3YmY5ZWM1MDBkMiIsInZlcnNpb24iOjF9.yoXEV5ircj_cjQhUA_RpWH_8Kaev0sRLwQulYD8wmqxfSEuqamBGedXnIg9X_EcpjvulBhapjGZN2G0s0vz4Dg
|
216 |
+
- type: rouge
|
217 |
value: 3.2393
|
218 |
+
name: ROUGE-2
|
219 |
verified: true
|
220 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTkwNzEwYjc5YTZkMmE4NmEwMDE1OTRiNTJmM2VlYmI3NmM2NjIwZWMxM2ZkNjU2MzhjMmQzYjIxODRiYzY4ZiIsInZlcnNpb24iOjF9.CDK_e4fCwERbm3D_Y2tc41SSscIvlZKGTUQ16afpMuH2_HHKbpn7CNgtU9MWiyFZfdgafdUeQPo2CCYI-dCBCg
|
221 |
+
- type: rouge
|
222 |
value: 12.7038
|
223 |
+
name: ROUGE-L
|
224 |
verified: true
|
225 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDFkNjcyYmYxYzdlMTY2NTIyY2ZiZDJlZjliYTM1YWZjZGI3YzA5ZDczYjdkMGUzZmUxNmJkMDY0OTk3NWNlMSIsInZlcnNpb24iOjF9.XQmt4GEX0N6y2FNXfLAeLDkB96nJyxhN9dyy-OdBcu5E7Tw0dvIN3feYHxq8MenTShE9lsekIYZy2kieJQfmCg
|
226 |
+
- type: rouge
|
227 |
value: 19.8101
|
228 |
+
name: ROUGE-LSUM
|
229 |
verified: true
|
230 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTFhMGNhMzA0YmYyMDhiNzdlMDc2ZDQ3YjFjMDM3ODliMmIxMjQxZWMwYWM0NTM0OGNlZTkzMzVhZDBmMjA1YiIsInZlcnNpb24iOjF9.-YChaP7xwLM9W5jrdLSyLWdb3hAdPbm0mmij3X_pU3nqb3_wuPobjCLGEEQNxAnGq7kE-LI5hgXZ-lGhuKUCCQ
|
231 |
+
- type: loss
|
232 |
value: 2.766307830810547
|
233 |
+
name: loss
|
234 |
verified: true
|
235 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODAxYzRhNGM2ZGVkOWRiM2Y4NzNjZDM2MTY2MmM4MzY3ZWM5ZjdmMWUxZGY5Y2E2OTg4ZGEwYzBlMmFiYmQyNSIsInZlcnNpb24iOjF9.VRePqe8Z9dD5l6bsfIRLkFn4mwwVC8G--kOlofQWSiGusRxVrY50fa5MtKTGmuiNs5JDFCPjZmkpGYlSxnOeDw
|
236 |
+
- type: gen_len
|
237 |
value: 63.4493
|
238 |
+
name: gen_len
|
239 |
verified: true
|
240 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGY4NWI0MDc3NDk4NTg4YjQ5YzFmN2MyYWFjMzI0MjlkMGZlMWMzYThiMDFlMmM3MmE4ODg0YWExNTMyZjQ5MiIsInZlcnNpb24iOjF9.Ym3jfW0gthJhlLg4CW10jM9YUHUGbAPIdLefE3CTyP0OUrV9yuJAGV6-RDrV-Viwyy1Xaqg4BFa5pX7P2PRRDQ
|
241 |
- task:
|
242 |
type: summarization
|
243 |
name: Summarization
|
|
|
247 |
config: samsum
|
248 |
split: test
|
249 |
metrics:
|
250 |
+
- type: rouge
|
|
|
251 |
value: 26.8026
|
252 |
+
name: ROUGE-1
|
253 |
verified: true
|
254 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTBhYTQzMGVjZTJjZmE3NjBiNzI2M2FlNTA4Yzk5Njc1Yjk1YTk2NTJiMTRlMzQ3NjU2ZjQxZTNkNDVhNjMzYSIsInZlcnNpb24iOjF9.GyFUubKI3pM5Z8I1jz6Q_f7fSr1nVpwuFluUOVq8aaWfv7L1dZ_5By2FShQM1nwBM-mCiqtFb3a61eR3VEAeBw
|
255 |
+
- type: rouge
|
256 |
value: 6.0656
|
257 |
+
name: ROUGE-2
|
258 |
verified: true
|
259 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzEyZTYxYmVlYTc0MzNhMWM1ODgwODRiYWNkN2FjMjIzOTJhNzA0OTFkY2M0ZTJhMWMzNWMzY2E1OGJmYTg5OCIsInZlcnNpb24iOjF9.3U0PamPVFWWE7Nxh6u52mnMP-HpeGPEOLauZthcj32ELSuNx9s260ujguSW_BrJpCXqNNEqIzYTlWf97Ji8vCA
|
260 |
+
- type: rouge
|
261 |
value: 20.0098
|
262 |
+
name: ROUGE-L
|
263 |
verified: true
|
264 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGExYTRmZDgzYzllNWZmMGFlN2FhMDJmZGE1ODkyYTZlNmFhZjZmNGU4YzQwZGZiYTAyZmI1NGJmNjRjODkwYSIsInZlcnNpb24iOjF9.dEON7kZa7dKCHjz7nuuIBdcpwojM5-OxQuEf5n18ZywWdbk9H2LWGY2uvvCRp6cK2JsIzxzTmX9wK7zkWQiCAA
|
265 |
+
- type: rouge
|
266 |
value: 21.9115
|
267 |
+
name: ROUGE-LSUM
|
268 |
verified: true
|
269 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2Y4MWE4ZmIyMTA5YWU5YzllYzExMzA1OTc2Mjg3NTYxNjcwMWMxZGI0ZDhmYjJhMGIxNTllY2Q3NDVlNmM2MiIsInZlcnNpb24iOjF9.M8bYXCuNHyVAkA4vBbqvGe8yCgmjCrlhqqliAF6WcmrYRF8CvezQ4S4SWGhhVkcG6v84H-Pa9LzsKmualXdWBw
|
270 |
+
- type: loss
|
271 |
value: 2.317471981048584
|
272 |
+
name: loss
|
273 |
verified: true
|
274 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmI1YjNlYzI3OTY4YjY1MDIwYzk3ZDMzZDA4MzQwM2ZhNzY3NDQxZTA2ZThiMmE2MmFmNTg0OGMyYWFhODE5OSIsInZlcnNpb24iOjF9.QpoWo_TLKw72_PbtwknBA1LbUQ8ftls-8VBLuN8_ZhUN2lNNpipU2qMZ1Ga4xAUazkcMhT_TwpqjyGshJFkgAg
|
275 |
+
- type: gen_len
|
276 |
value: 19.1111
|
277 |
+
name: gen_len
|
278 |
verified: true
|
279 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTA2MmFiNjI5NzFjOTUzMTEwZTNiYzA1OGY1ZWEyNTE1ZTgzYjMxNDE4YjJkZmIxNWI4MDMyYWUxMWRkODk1NCIsInZlcnNpb24iOjF9.CXy-Dfle9ypabrK3I1GyhOWl46EyRDbf8XlY-D0cNktXcCCbKdgn8DWgJI199GJpH-19mMS_jQt049VJri2EDw
|
280 |
- task:
|
281 |
type: summarization
|
282 |
name: Summarization
|
|
|
286 |
config: default
|
287 |
split: test
|
288 |
metrics:
|
289 |
+
- type: rouge
|
|
|
290 |
value: 25.2061
|
291 |
+
name: ROUGE-1
|
292 |
verified: true
|
293 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjZmZDRlN2NjZTQyNzkyMmZiYzk1MjJmMmE0MGM4ZjUwOGNmOGFhZjg0MzE0MzM4MmE1Y2EyYTY4ZThmNzUzMiIsInZlcnNpb24iOjF9.pdJWpUnMeqftinZrPkkFRWbCA253BYgt5W-EqbyTVi9BteojJ6yEDbMjE0TyYzlJ28JBcw4IVNL2zaWCgpfRBQ
|
294 |
+
- type: rouge
|
295 |
value: 4.7048
|
296 |
+
name: ROUGE-2
|
297 |
verified: true
|
298 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGRjOGUzZTk1ZDc0Zjk5MmE4ZjUzNmZiZjQ2YzE2YzYzODdmYmY3NzMwNDdmYmViNjVkZTUzMmY4YjllOGQ1NCIsInZlcnNpb24iOjF9.nFiT7HhUZSDofK6_UH2-1rzPz_48w7e5j0Q72vqgodSNIwpv2JOlcb1GOlaA9jkvy45PJyDBgP9i6kLVfaNBBw
|
299 |
+
- type: rouge
|
300 |
value: 17.8593
|
301 |
+
name: ROUGE-L
|
302 |
verified: true
|
303 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmY5ZjM0ZjdkYTZiMzk0ZWYyM2EzZWNjMjczMjI2MzkwYmNiN2JhNDEzNzdmMmE0NzEwNmVkNGU5YTlkZDAzYyIsInZlcnNpb24iOjF9.C3ZgUsGNNtwZVJFcT90KkBfewrrA3ZXxxVl2u5ykUtzpS4gzoaRuZbPT8WOJAog7kfPPJiG_GZGYy9XTTCdIBw
|
304 |
+
- type: rouge
|
305 |
value: 18.0798
|
306 |
+
name: ROUGE-LSUM
|
307 |
verified: true
|
308 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDU4Y2Y3MzExNzNlZTI3NWVmZTNjMmZkNTAxNDBjMzJiZTI5M2E2N2ViODk5OGEwZGU5NzYxZWMzMjMwNmQ2MSIsInZlcnNpb24iOjF9.qDLZsjtftvlw8-3kOoUvanWmemmvaPxUIAxOVh1B18Ihn9kkm0FnZbWxl65YdOLg3dqDcHnDFXvXcS81C8dmBw
|
309 |
+
- type: loss
|
310 |
value: 3.003053665161133
|
311 |
+
name: loss
|
312 |
verified: true
|
313 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTM2ODRkMjk5MjczY2ViZGVjMjJjOTFmYTk2NTAyNmUwMTRiZjYwZTllY2NhODFhYWVkZTIzYzQxZjZlOGFkNCIsInZlcnNpb24iOjF9.3SeJzRO0b4cNCTOgsf7c8UrLCLW-6JoOHtNMmMr5DCzNzfqlt2TSJ5ClahzzAYA2_5QhTMhcUYOewH5uZhkpDA
|
314 |
+
- type: gen_len
|
315 |
value: 27.4815
|
316 |
+
name: gen_len
|
317 |
verified: true
|
318 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDdiYTVkZGI0NzE0ODcwNjgwNGQ0YmNjZDI1MWQxZWQ0MzNmMDJkYmE4MGM5ZjM4NGViNWZiNTdjNTg2YzBlOSIsInZlcnNpb24iOjF9.VoPyoq8HZq8nbucrPYt52flRFtkD5VAfVD7LykAp-GiN2W6D3cpcagMMrHThP9e8q3qDodxddMcnwY88CGtkAg
|
319 |
- task:
|
320 |
type: summarization
|
321 |
name: Summarization
|
|
|
325 |
config: 3.0.0
|
326 |
split: test
|
327 |
metrics:
|
328 |
+
- type: rouge
|
|
|
329 |
value: 27.5692
|
330 |
+
name: ROUGE-1
|
331 |
verified: true
|
332 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2UzNDRjNDJhNjViYjgxNDY2NzAwODkyYjk1OTllNWFiYmI2MGEyMmM3ZTc1YWZjNjhiZDZkYzAxYzIwYTQzZiIsInZlcnNpb24iOjF9.FEJU7de6nnYa1rhAngf3h0JDSFKXzWKkcHwQtcz6rbPuVV0Jw7u-9PwDXBFh0X8n2PJjOfCqM5hmcrUe0FxkCQ
|
333 |
+
- type: rouge
|
334 |
value: 6.1264
|
335 |
+
name: ROUGE-2
|
336 |
verified: true
|
337 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGIzODA2ZjU2YmM0YmJiZDIxNzQ0ZDI1NGQzZGZlNDg5OTZhYmMwZTQ1ZjVlYzM5ZTQzMjZkMTIyZmY1OGQ2YiIsInZlcnNpb24iOjF9.fN1wSGc_tUvIgYyzKU35PuPxKyTOotKnMCW_u452LduRVyIey9KB8kf8E35vTOVvk7TCiuvRuxXDoAATFktbBQ
|
338 |
+
- type: rouge
|
339 |
value: 17.1127
|
340 |
+
name: ROUGE-L
|
341 |
verified: true
|
342 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWRjNTNhZjg1NDVkNTQ5MjkwZjNiNzY0Nzk5ZmM4YjhhZmZiZjQzZGY1YWM1ZGI5MGE0YjNiYzNmNWYyNWI2OSIsInZlcnNpb24iOjF9.KVGdIERnuGTOrxm71i2znI8tdRCgVz7SijP08tsE0H54eUijAYDqQccspfZTXRXeFn0lOUjSHDvHj4ODIRYvAw
|
343 |
+
- type: rouge
|
344 |
value: 23.0066
|
345 |
+
name: ROUGE-LSUM
|
346 |
verified: true
|
347 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGUyMzhlODY1YWI4ZDg2NzYwZDYwNmYzZTRhMTQ3NDE2MzUzZGViNzhjMTkzZDRhNTljNDEyMTY4NzAwMjE0OCIsInZlcnNpb24iOjF9.pBz5E_1ffBrv4tDCJhuYFIuBFBk0P3SKxLYoIhOVj_fW0Mj6ZKPcA9ZhdE4U-HsHEgSvFhtBw1UlsGiu145XBw
|
348 |
+
- type: loss
|
349 |
value: 2.218526601791382
|
350 |
+
name: loss
|
351 |
verified: true
|
352 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjYxNDk4OWU0M2Y1ZjMxNTA3NjdiNjQ5NWFjYzJiMjVhMjgzMTA3NDhlNTVjMjllZjQ0NWQ2YmYzYjdiMTQ1OCIsInZlcnNpb24iOjF9.SJdyGLltcLnB03U6QxSkZ71Im0aGK-oTbEQDMj2AnEPFThNTb0mMEMpCWpH1lLVeDAh-PE6fCmgt4yPS6n2nBg
|
353 |
+
- type: gen_len
|
354 |
value: 39.1952
|
355 |
+
name: gen_len
|
356 |
verified: true
|
357 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTMyY2JiYWVhYTM3OWU2YjhiMDEwZjAwZDgxN2FmNjk2MzZhYmQzMWZiODg2NDY0ZmU4MjdhNjk0MTViMGY1YyIsInZlcnNpb24iOjF9.bsLAi2R8QTrCUj1VW4GQqYauY7CV3mFm2S294zHCJU2ZlAcikutcjxAcgvuSSGiAVJ02Odm5bMTuzx7SYMUSAQ
|
358 |
- task:
|
359 |
type: summarization
|
360 |
name: Summarization
|
|
|
364 |
config: default
|
365 |
split: test
|
366 |
metrics:
|
367 |
+
- type: rouge
|
|
|
368 |
value: 28.0632
|
369 |
+
name: ROUGE-1
|
370 |
verified: true
|
371 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2RiODA0ZTQxYWU0NDI5YmNjZmYzYTZmY2I5NTczYzVhZjcxOTYwMWI3ZjZiMzRlZmI5ZTA5NjVkY2E4NDFlMyIsInZlcnNpb24iOjF9.POIQUXGryoEzHmdBCeqaBh70uz33XlKVLjfhyRFwhWj7UV15SsDcuumkEk2BXkShFHDRo0CQd1AXD1fFsPCVCQ
|
372 |
+
- type: rouge
|
373 |
value: 9.8996
|
374 |
+
name: ROUGE-2
|
375 |
verified: true
|
376 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDBiMDllNTZlZmJiYWI1ZTIxM2JhYmZhYTAzYTQ0NmUzNjcyZjkzMDliYTE5ZjIwY2M0YzU2ZWZlYjNhZDY2YyIsInZlcnNpb24iOjF9.EEJO-ZRVi2EiM-uKMvimaITiHh7wqzNBza6lsIvdyVhVf4UwGhsUaArHzlYR7xn53UBCtIDTucXX7NKFst_4Ag
|
377 |
+
- type: rouge
|
378 |
value: 18.25
|
379 |
+
name: ROUGE-L
|
380 |
verified: true
|
381 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTk4ZmJiYWIwYmY4MTBmNGVlMmE1YzA4N2VmYWU3NjRlNTU3YjI2YjBhOGIzNzcwZjczOTZmZGJiNjMyMjYzZiIsInZlcnNpb24iOjF9.Qx-ihTp0UuzhShqHQkiTijODUst1LO5Bi8KaQOCIiVhvywN-2Wt3bmeSNV_C0b5BXsSaHIxrWBTeSRaq5Zp_Bw
|
382 |
+
- type: rouge
|
383 |
value: 21.9053
|
384 |
+
name: ROUGE-LSUM
|
385 |
verified: true
|
386 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTIzNGNkNTAyYTkzZjE5ZGZhZjZkYmU3Yjg2ZTVhYjY1NjZhODZjM2NkMWQ5NmJjN2UxNTZlMmJmNDNmOTczZSIsInZlcnNpb24iOjF9.6ZY8rK5bRfOZJkdvhpvOt_gW1xCoA4JsAi0-6No4y-lBaLGUo4LXpGaVcJrrvdN-S7e7yCxnA32jGCdYXzJJBA
|
387 |
+
- type: loss
|
388 |
value: 2.032966375350952
|
389 |
+
name: loss
|
390 |
verified: true
|
391 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTM5MmQzMWZhOWIwNjNjNThhNGE4NzFiMzdhNmMzZWM4ZGYyNWE1NmZjMDVjNTBmMGRiNzYzMTc1ZDg2YTYxNCIsInZlcnNpb24iOjF9.Zqrbz7mmljH19mEep_mm4ev5FEsozIqG0eNkj3V5s85OgrHyuKOVkGKhRlqjcWfgkUlsxTpaemZDUVIR84XrBw
|
392 |
+
- type: gen_len
|
393 |
value: 48.5987
|
394 |
+
name: gen_len
|
395 |
verified: true
|
396 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODZjNGJiOGUzM2M3NDM3MDRmNmQ1ZjQ3ODUyZTQ2NjEyYmM0YWRhMmU4MDdkOTZmMGNkNTIyNDg3ZmQxMjA4MiIsInZlcnNpb24iOjF9.y91kl4W-QIy6lfQDl0s4h0aeV-v0iH7Y06AJBYRYrddUXRiDw2oSTHEdf14d3Hw-oZNPftzBHUJqAckwEpGFDw
|
397 |
- task:
|
398 |
type: summarization
|
399 |
name: Summarization
|
|
|
403 |
config: y
|
404 |
split: test
|
405 |
metrics:
|
406 |
+
- type: rouge
|
|
|
407 |
value: 34.7848
|
408 |
+
name: ROUGE-1
|
409 |
verified: true
|
410 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2QxOTU1YTUxYWJjOTcwOGYwZjA3MGJlYmRhYWUwMGNhYmQxYjVmMjU5M2E5OGRiY2RmMTNmNGNhZDdmNzc1OCIsInZlcnNpb24iOjF9.bp2K7V-BDMQMd3zk2RY3pILKI7LimWrD5psesXnSF20JiRA3d5-bQdOfPeZGu3ydUqbml3MTswM0lg_6EZTjAw
|
411 |
+
- type: rouge
|
412 |
value: 9.7549
|
413 |
+
name: ROUGE-2
|
414 |
verified: true
|
415 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOGY4OWM4MjVmMzhmNGUwYzAxODNjMjY4OTY1YjQ2MjZiYzM2NzgyNGZhMjVlNjllZmI3OTMzNTVhZDA1YzMyOSIsInZlcnNpb24iOjF9.HQ_emvr1RVEfeNfQUdfhfzk2O5BGwzpQKojvRW_w44Ixakn_VrZ4GurxYo0JTF4dDwDBDqjaFnZ4EiYcsrxODQ
|
416 |
+
- type: rouge
|
417 |
value: 22.228
|
418 |
+
name: ROUGE-L
|
419 |
verified: true
|
420 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWVkMzc2ODM1ZTg2YzQ4YjMzZjQwMThiODI0YzA5MzJmZjY1ZTJlOGZhOTM1OWEzOTE3M2ExYzFiMjM2NDRlMSIsInZlcnNpb24iOjF9.shmWrR-rNKAYOqEgnnlrgWXaWAWbvrKC_IyvK-fwnqoJcphB9ef2gVX758tQgfe878M1N1sE7StT8rd7FbD8Cw
|
421 |
+
- type: rouge
|
422 |
value: 28.0389
|
423 |
+
name: ROUGE-LSUM
|
424 |
verified: true
|
425 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTJmZTczZDc4N2ZlNDk3NmY0Njc2Y2JhNGU2OWJjZGU4YWQ3Y2RjNDU1ZTEyNjFiZDQxZGNhZWFmYTAwOTBiMSIsInZlcnNpb24iOjF9.yOTMgX1vpuhlyPkfCAyNf1k5nSInny0YrbqJeC_MDZlavVIxOQT6qVcMYJpLF2AKRp6UsuFB06PANbQu4Bj6CA
|
426 |
+
- type: loss
|
427 |
value: 1.7787292003631592
|
428 |
+
name: loss
|
429 |
verified: true
|
430 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2VlMGU3NDE0NmFiNTI2M2NhZmU2YzRhYjU1ZWNjYmM3YTllMTQxODJhM2JlMjk3NzVjYjQ5M2FlOTk2NjNmZCIsInZlcnNpb24iOjF9.wkkUrosSgGkei41n6CxQH_UwS6fJTMzXLV88EgnI_8Y6Qz2qa9B2cGhpFkP__snnX6u9jhWj68oAfZifqaXnCw
|
431 |
+
- type: gen_len
|
432 |
value: 71.6372
|
433 |
+
name: gen_len
|
434 |
verified: true
|
435 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODI0NTcwOTZmNzkwOTFhMTdmYWMxYjI2YTdmMTYwYTBlMTEyOTc3MmFkYmZkNGJmYjc4MTJlYmYwNzIxMjkzMCIsInZlcnNpb24iOjF9.EM9Vh5Mb6H3htv45ohj6FYqBUtmQi1sn0j97brEFWRYp--8N2Y781cR9ktqylEz6PgbbwpuxMYOMD5MctmGLCw
|
436 |
- task:
|
437 |
type: summarization
|
438 |
name: Summarization
|
|
|
442 |
config: plain_text
|
443 |
split: validation
|
444 |
metrics:
|
445 |
+
- type: rouge
|
|
|
446 |
value: 23.5925
|
447 |
+
name: ROUGE-1
|
448 |
verified: true
|
449 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjk2NWVkM2Y5NTgxYjgyYmY2YjgzYjZiN2VhZGVkOWNiYmRiZGU0ZGYwNzlkN2E3ZDk5ZjQ3ZTQyYjU5YzczYSIsInZlcnNpb24iOjF9.ScWumfXg7-ZeJEZT1IHDVt5LWMDZEihiiCux5chXP2AeRs3pWKhI6xr_D5i3CCEDeyiMzKleCASMBe4sC9LgDQ
|
450 |
+
- type: rouge
|
451 |
value: 5.6762
|
452 |
+
name: ROUGE-2
|
453 |
verified: true
|
454 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDU3MGNmMDY3YWQxNDdlMTk5MjM1NGU4M2RmNDNiYzllYmRmNTYzZGFiOGU5MjQ0YWMzYTg1OWFlNmNmMzQ5NiIsInZlcnNpb24iOjF9.9SKt_I8WGKu6bsovBR4mSTDNEaSHB1tN5RyY3JTCHYs2YQNczaKwLNPnyG2i0IbkvaPX_8EOQ7KzwQ5raUVFBg
|
455 |
+
- type: rouge
|
456 |
value: 13.8108
|
457 |
+
name: ROUGE-L
|
458 |
verified: true
|
459 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTBiZDVkYjI4ZDBlZGM2NDM4M2U2NzdjNzViNDkzZjE3YTBmYzdlNDNlMTZhZTUxNjA2NmJkODE2ZTk1MTAxMSIsInZlcnNpb24iOjF9.KMTkQsI9BfDfL7FZpwZ9kxTTRA8DNrUEpyBZtloQ0sNfhO0t0Ch1qhktz0HaA0uQfC0WFRfrb9Iz7uMc8XVRBg
|
460 |
+
- type: rouge
|
461 |
value: 20.2437
|
462 |
+
name: ROUGE-LSUM
|
463 |
verified: true
|
464 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjBkZGJlYzZjMjQ1Njg4MjQ2NzJhYjY5ZGZlN2Y5Y2M4MDQ0YzQ3YzQzYmY5N2VkNjBiNTEwMDNmZWRlMTAwYyIsInZlcnNpb24iOjF9.AqYAfIMFBY7AIP1yJbjaAbJXYs5VbXxWKpsA_rdW_HWxITvjqoJDK9X3wCueXMy7dSE6L-ysC4yl99Bbc50KBA
|
465 |
+
- type: loss
|
466 |
value: 2.6377077102661133
|
467 |
+
name: loss
|
468 |
verified: true
|
469 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGEzMTZhODM0Nzg0ZDY3OTVkYmZmODQ1Y2YzMTY3YmJlYjk2ZGRiMWFkMDQxMTkyYTgwZWNkNmU0NzI0NjA1NCIsInZlcnNpb24iOjF9.ziVXhWBRAml5Xwa-tx9ywwtiJeIzIIclY532L0Mtft3Sc88oGPK9av6nh4kMiO5yWSHJnM3KFQWiuco7w_xNDg
|
470 |
+
- type: gen_len
|
471 |
value: 64.1807
|
472 |
+
name: gen_len
|
473 |
verified: true
|
474 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDNhZTRhODgwODI1YmRlODZiY2I3YjFmY2MyZGYyYTY1MzQ5OTgwZGI1NmUwNDMwMmQ0N2Y3YmZmMzcyMTc2NSIsInZlcnNpb24iOjF9.NCVj0Uaq3-diq6pnu8EC0tgwv24NwQCgmWiqpOMvJSN17B_98z_dMbLHRzY8e_tNNVFFagiCnknoE00OqUTjDg
|
475 |
- task:
|
476 |
type: summarization
|
477 |
name: Summarization
|
|
|
481 |
config: plain_text
|
482 |
split: test
|
483 |
metrics:
|
484 |
+
- type: rouge
|
|
|
485 |
value: 23.7438
|
486 |
+
name: ROUGE-1
|
487 |
verified: true
|
488 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzIwMzZjOGQ5N2U3MTg3NmEwYzZkNjllNDc4NzQ4NWUxN2JmYjdiOGU2MjhkZGJhODY4NDU4N2E5ODU1NTFhMiIsInZlcnNpb24iOjF9.cJoHXGYopFoFVmQXdxu3KrG_usk1ouc0PPR6FS9HrZEbi2T5LtVANntlXmlLTXSvOEaorUyg08yot_j6j1oeCw
|
489 |
+
- type: rouge
|
490 |
value: 5.501
|
491 |
+
name: ROUGE-2
|
492 |
verified: true
|
493 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWQ3YmQ5ZTJkNmJhZGEyMTkzYjlkMWZmZGVhNGE5Y2IzYzA5OWM1NTY0NTU0MWUzYTIzNTQ0OGI3ZWZkNjlkMSIsInZlcnNpb24iOjF9.C_SbNoz5qIo0CtVPL_5jqFNZxgmJ1XE43TvVz2reog2jtlhekNfN0rvaHxT4TadAAzIgDZayeBMeNaASgmNCDA
|
494 |
+
- type: rouge
|
495 |
value: 13.8132
|
496 |
+
name: ROUGE-L
|
497 |
verified: true
|
498 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTAxODA2NmNlNjkyYTQ4YjEwOTA1ZGMyMjVlZjkzMGI3NzNiMTRkZGRmNDJjZDc2MTYxYzI3NTBlNTVjY2IxNCIsInZlcnNpb24iOjF9.UklkyvqHV3axZ_PalbPb1JZN7rgQjHjJr0ke1yDUzujrY6yBr3XpPxjFhwsEElalc1iiEgdtEZnaCbBhskdGBQ
|
499 |
+
- type: rouge
|
500 |
value: 20.4615
|
501 |
+
name: ROUGE-LSUM
|
502 |
verified: true
|
503 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmNhZDI2ODQ4MjBhZDNlZjJkMTQ1NmZjZTdjMDZlMjcwYjE4M2M5ZjIxYzA2M2JmYmJmZDliZTU3NzVkMjdmZiIsInZlcnNpb24iOjF9.m2aRMFUpPFvMSf3sxB7HbKIslWrggFamjiIlOAiPuH5_N8wyLJeHJJw8uvULE8R0GKGWuqXfCCv--lyhZKZkAA
|
504 |
+
- type: loss
|
505 |
value: 2.6383883953094482
|
506 |
+
name: loss
|
507 |
verified: true
|
508 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTQzMjFiZWE1NDI1OTFlNWUxMzFiYjJhNzViNDYxMzI3OGU2ZTE1ZDJkNDA3Y2NhODA0ZWM3ZmM3ZTM1NmFlZiIsInZlcnNpb24iOjF9.twTQ94T2Nsq0__TcHLaJ_8HcqozA_FOi6pAiM_IP5qSqKlUXYV1S2-nuS1vs69QB-tSp4XIbqRqhSgKv0VoABw
|
509 |
+
- type: gen_len
|
510 |
value: 64.9085
|
511 |
+
name: gen_len
|
512 |
verified: true
|
513 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDk3Njc5ZWM3ZTRkMzk2YjJmMjg1YjFlNDExNTU2NTRhNzRlNjA4NGFkZDg2YmQzN2UzNThhODFmZTNlMjdkZiIsInZlcnNpb24iOjF9.2rXKy4mi2VbZRDewY2mKsVe42KuwxIWcmIzdA39RbSJ7Wg45MfRDUjZweyz7Bnlmy6eCcdv7Ya4oyUwAjNV3AQ
|
514 |
---
|
515 |
|
516 |
# README - long-t5-tglobal-base-16384-booksum-V11-big_patent-V2
|