Multi-Source Experimentals
Collection
Domain Specific Classification Models : SigLIP2
•
8 items
•
Updated
•
1
Road-Subsigns-Classification is an image classification vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for a single-label classification task. It is designed to classify images of road subsigns using the SiglipForImageClassification architecture.
Classification Report:
precision recall f1-score support
M1 0.9907 0.9815 0.9860 324
M11c1-E 1.0000 0.9787 0.9892 47
M2 0.9950 0.9853 0.9901 204
M3a-droite 0.9699 0.9680 0.9690 500
M3a-gauche 0.9431 0.9375 0.9403 336
M3b-gauche 1.0000 1.0000 1.0000 14
M4a 0.9914 0.9664 0.9787 119
M4b 0.8929 1.0000 0.9434 25
M4c 0.8947 1.0000 0.9444 17
M4d1 0.9887 1.0000 0.9943 175
M4d2 0.9844 0.9844 0.9844 64
M4f 0.9826 1.0000 0.9912 452
M4g 0.9940 1.0000 0.9970 329
M4h 0.0000 0.0000 0.0000 1
M4u 0.8571 0.9231 0.8889 13
M4v 1.0000 1.0000 1.0000 100
M4z1 1.0000 1.0000 1.0000 45
M4z2 0.0000 0.0000 0.0000 1
M5-STOP 1.0000 0.9872 0.9935 234
M6a 0.9940 0.9920 0.9930 500
M6h 1.0000 0.9943 0.9972 353
M6i 0.9885 1.0000 0.9942 86
M6j 0.9855 1.0000 0.9927 68
M8a 0.9619 0.9528 0.9573 106
M8b 0.7407 0.9091 0.8163 22
M8c 0.8485 0.9825 0.9106 57
M8d 0.9739 0.9739 0.9739 115
M8e 0.9754 0.9835 0.9794 121
M8f 0.9972 0.9756 0.9863 369
M9Z-INTERDIT-HORS-CASES 0.9787 0.9919 0.9852 370
M9Z-SAUF-BUS 0.9650 0.9452 0.9550 146
M9Z-SAUF-BUS-SCOLAIRE 0.9688 0.9394 0.9538 66
M9c 0.9843 1.0000 0.9921 500
M9d 0.9945 0.9759 0.9851 373
M9v 0.9952 1.0000 0.9976 418
M9z 0.7760 0.7132 0.7433 136
M9z-DES-DEUX-COTES 0.9741 0.9496 0.9617 119
M9z-ECOLE 1.0000 0.9474 0.9730 38
M9z-PARKING-PRIVE 1.0000 1.0000 1.0000 9
M9z-PASSAGE-SURELEVE 0.9808 0.9808 0.9808 104
M9z-PROPRIETE-PRIVEE 0.9091 0.8333 0.8696 12
M9z-RAPPEL 0.9933 0.9978 0.9955 447
M9z-SAUF-CHANTIER 1.0000 0.7273 0.8421 11
M9z-SAUF-CONVOIS-EXCEPT 0.0000 0.0000 0.0000 2
M9z-SAUF-CYCLISTES 0.9626 0.9836 0.9730 183
M9z-SAUF-DESSERTE 0.9307 0.9792 0.9543 96
M9z-SAUF-LIVRAISONS 0.8478 0.9286 0.8864 42
M9z-SAUF-POLICE 1.0000 0.8667 0.9286 15
M9z-SAUF-RIVERAINS 0.9677 0.9615 0.9646 312
M9z-SAUF-SERVICE 0.9160 0.9375 0.9266 128
M9z-SAUF-TAXIS 0.7778 0.8235 0.8000 17
M9z-SAUF-VEHICULES-AGRICOLES 0.9712 0.9018 0.9352 112
M9z-SAUF-VEHICULES-AUTORISES 0.9253 0.9817 0.9527 164
M9z-SECOURS 1.0000 0.6667 0.8000 9
M9z-SIGNAL-AUTO 0.9892 0.9892 0.9892 93
M9z-SORTIE-POMPIERS 0.9062 0.9355 0.9206 31
M9z-SORTIE-VEHICULES 1.0000 0.7857 0.8800 14
M9z-SUR-LE-TROTTOIR 0.9444 0.9444 0.9444 18
M9z-VERGLAS 1.0000 0.6875 0.8148 16
zz 0.9486 0.9600 0.9543 500
accuracy 0.9732 9298
macro avg 0.9093 0.8968 0.9009 9298
weighted avg 0.9731 0.9732 0.9729 9298
The model categorizes road subsigns into 60 classes:
!pip install -q transformers torch pillow gradio
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Road-Subsigns-Classification"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
labels = {
"0": "M1", "1": "M11c1-E", "2": "M2", "3": "M3a-droite", "4": "M3a-gauche",
"5": "M3b-gauche", "6": "M4a", "7": "M4b", "8": "M4c", "9": "M4d1",
"10": "M4d2", "11": "M4f", "12": "M4g", "13": "M4h", "14": "M4u",
"15": "M4v", "16": "M4z1", "17": "M4z2", "18": "M5-STOP", "19": "M6a",
"20": "M6h", "21": "M6i", "22": "M6j", "23": "M8a", "24": "M8b",
"25": "M8c", "26": "M8d", "27": "M8e", "28": "M8f", "29": "M9Z-INTERDIT-HORS-CASES",
"30": "M9Z-SAUF-BUS", "31": "M9Z-SAUF-BUS-SCOLAIRE", "32": "M9c", "33": "M9d", "34": "M9v",
"35": "M9z", "36": "M9z-DES-DEUX-COTES", "37": "M9z-ECOLE", "38": "M9z-PARKING-PRIVE",
"39": "M9z-PASSAGE-SURELEVE", "40": "M9z-PROPRIETE-PRIVEE", "41": "M9z-RAPPEL",
"42": "M9z-SAUF-CHANTIER", "43": "M9z-SAUF-CONVOIS-EXCEPT", "44": "M9z-SAUF-CYCLISTES",
"45": "M9z-SAUF-DESSERTE", "46": "M9z-SAUF-LIVRAISONS", "47": "M9z-SAUF-POLICE",
"48": "M9z-SAUF-RIVERAINS", "49": "M9z-SAUF-SERVICE", "50": "M9z-SAUF-TAXIS",
"51": "M9z-SAUF-VEHICULES-AGRICOLES", "52": "M9z-SAUF-VEHICULES-AUTORISES", "53": "M9z-SECOURS",
"54": "M9z-SIGNAL-AUTO", "55": "M9z-SORTIE-POMPIERS", "56": "M9z-SORTIE-VEHICULES",
"57": "M9z-SUR-LE-TROTTOIR", "58": "M9z-VERGLAS", "59": "zz"
}
def classify_subsign(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
return {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
# Create Gradio interface
iface = gr.Interface(
fn=classify_subsign,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Prediction Scores"),
title="Road Subsigns Classification",
description="Upload an image to predict the road subsign category."
)
if __name__ == "__main__":
iface.launch()
The Road-Subsigns-Classification model is designed to classify images of road subsigns into 60 categories. Potential use cases include:
Base model
google/siglip2-base-patch16-224