Multi-Source Experimentals
Collection
Domain Specific Classification Models : SigLIP2
•
8 items
•
Updated
•
1
PussyCat-vs-Doggie-SigLIP2 is an image classification vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for a single-label classification task. It is designed to classify images as either a cat or a dog using the SiglipForImageClassification architecture.
The model categorizes images into two classes:
Classification Report:
precision recall f1-score support
Pussy Cat 0.9194 0.8745 0.8964 12500
Doggie 0.8803 0.9234 0.9013 12500
accuracy 0.8989 25000
macro avg 0.8999 0.8989 0.8989 25000
weighted avg 0.8999 0.8989 0.8989 25000
!pip install -q transformers torch pillow gradio
import gradio as gr
from transformers import AutoImageProcessor
from transformers import SiglipForImageClassification
from transformers.image_utils import load_image
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/PussyCat-vs-Doggie-SigLIP2"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
def animal_classification(image):
"""Predicts whether the image contains a cat or a dog."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
labels = {
"0": "Pussy Cat",
"1": "Doggie"
}
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
return predictions
# Create Gradio interface
iface = gr.Interface(
fn=animal_classification,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Prediction Scores"),
title="Cat vs Dog Classification",
description="Upload an image to classify whether it contains a cat or a dog."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
The PussyCat-vs-Doggie-SigLIP2 model is designed to classify images as either a cat or a dog. Potential use cases include:
Base model
google/siglip2-base-patch16-224