|
--- |
|
license: creativeml-openrail-m |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- endpoints-template |
|
inference: false |
|
--- |
|
|
|
# Fork of [CompVis/stable-diffusion-v1-4](https://huggingface.co./CompVis/stable-diffusion-v1-4) |
|
|
|
> Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. |
|
> For more information about how Stable Diffusion functions, please have a look at [🤗's Stable Diffusion with 🧨Diffusers blog](https://huggingface.co./blog/stable_diffusion). |
|
|
|
For more information about the model, license and limitations check the original model card at [CompVis/stable-diffusion-v1-4](https://huggingface.co./CompVis/stable-diffusion-v1-4). |
|
|
|
### License (CreativeML OpenRAIL-M) |
|
|
|
The full license can be found here: https://huggingface.co./spaces/CompVis/stable-diffusion-license |
|
|
|
--- |
|
|
|
This repository implements a custom `handler` task for `text-to-image` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co./philschmid/stable-diffusion-v1-4-endpoints/blob/main/handler.py). |
|
|
|
There is also a [notebook](https://huggingface.co./philschmid/stable-diffusion-v1-4-endpoints/blob/main/create_handler.ipynb) included, on how to create the `handler.py` |
|
|
|
### expected Request payload |
|
```json |
|
{ |
|
"inputs": "A prompt used for image generation" |
|
} |
|
``` |
|
|
|
below is an example on how to run a request using Python and `requests`. |
|
|
|
## Run Request |
|
```python |
|
import json |
|
from typing import List |
|
import requests as r |
|
import base64 |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
ENDPOINT_URL = "" |
|
HF_TOKEN = "" |
|
|
|
# helper decoder |
|
def decode_base64_image(image_string): |
|
base64_image = base64.b64decode(image_string) |
|
buffer = BytesIO(base64_image) |
|
return Image.open(buffer) |
|
|
|
|
|
def predict(prompt:str=None): |
|
payload = {"inputs": code_snippet,"parameters": parameters} |
|
response = r.post( |
|
ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json={"inputs": prompt} |
|
) |
|
resp = response.json() |
|
return decode_base64_image(resp["image"]) |
|
|
|
prediction = predict( |
|
prompt="the first animal on the mars" |
|
) |
|
``` |
|
expected output |
|
|
|
![sample](sample.jpg) |
|
|