leaderboard-pr-bot's picture
Adding Evaluation Results
38c316a verified
|
raw
history blame
4.69 kB
---
license: apache-2.0
tags:
- mergekit
- merge
- moe
base_model:
- mistralai/Mistral-7B-Instruct-v0.2
- mistralai/Mistral-7B-Instruct-v0.1
model-index:
- name: mistral-instruct-moe-experimental
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 61.01
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.55
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 58.22
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 60.4
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.09
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.08
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental
name: Open LLM Leaderboard
---
# Mistral Instruct MoE experimental
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit) using the `mixtral` branch.
**This is an experimental model and has nothing to do with Mixtral. Mixtral is not a merge of models per se, but a transformer with MoE layers learned during training**
This uses a random gate, so I expect not great results. We'll see!
## Merge Details
### Merge Method
This model was merged using the MoE merge method.
### Models Merged
The following models were included in the merge:
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2)
* [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.1)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model: mistralai/Mistral-7B-Instruct-v0.2
gate_mode: random
dtype: bfloat16
experts:
- source_model: mistralai/Mistral-7B-Instruct-v0.2
positive_prompts: [""]
- source_model: mistralai/Mistral-7B-Instruct-v0.1
positive_prompts: [""]
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_osanseviero__mistral-instruct-moe-experimental)
| Metric |Value|
|---------------------------------|----:|
|Avg. |61.39|
|AI2 Reasoning Challenge (25-Shot)|61.01|
|HellaSwag (10-Shot) |81.55|
|MMLU (5-Shot) |58.22|
|TruthfulQA (0-shot) |60.40|
|Winogrande (5-shot) |76.09|
|GSM8k (5-shot) |31.08|