LMFResearchSociety/CheckpointArchive
Text-to-Image
β’
Updated
β’
101
Being Ryan Gosling, being Patrick Bateman, watching Blade Runner 2049 (2017) on repeat, rewatching American Psycho (2000), watching Barbie (2023). Get Kenergetic!
from loadimg import load_img
from huggingface_hub import InferenceClient
# or load a local image
my_b64_img = load_img(imgPath_url_pillow_or_numpy ,output_type="base64" )
client = InferenceClient(api_key="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Describe this image in one sentence."
},
{
"type": "image_url",
"image_url": {
"url": my_b64_img # base64 allows using images without uploading them to the web
}
}
]
}
]
stream = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500,
stream=True
)
for chunk in stream:
print(chunk.choices[0].delta.content, end="")
pip install -qU "huggingface_hub>=0.22"
from huggingface_hub import PyTorchModelHubMixin
from torch import nn
class MyModel(nn.Module,PyTorchModelHubMixin):
def __init__(self, a, b):
super().__init__()
self.layer = nn.Linear(a,b)
def forward(self,inputs):
return self.layer(inputs)
first_model = MyModel(3,1)
first_model.push_to_hub("not-lain/test")
pretrained_model = MyModel.from_pretrained("not-lain/test")